This answer shows two to three approaches:
The first one shows a version where a few often used values are evaluated beforehand and are saved in a macro. Also, the \startAngle and the \endRadius are initialized as the \foreach loop only adds \deltaAngle for the angle and .05 for the radius.
The \foreach loop is then used to iterate over the segments but their number (\iN) is not even used. The nodes
are then places using simple math.
The second solution uses my TikZ library qrr.misc which contains a few “fixes” and addition to PGF.
The used additions are the use int key for \foreach that allows us to use arbitrary PGFmath for the \foreach loop and the full arc key as well as the R prefix from PGFmath. The full arc key is similar to the \degrees[<n>] macro from PSTricks. Instead of calculating the angle for the <i>th element of <n> elements (like with the arcAngle function of the third solution) it allows us to specify <i> R in a PGFmath-aware environment. I also added an alternative output. These solutions are probably slower than the first solution because they use more PGfmath and re-evaluate certain values repeatedly (but of course we could use them in \foreach’s evaluate key, too).
The third solution shows an only-PGmath solution that also implements the full arc key via the arcAngle function.
Code 1
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}[declare function={bigR(\n)=\smallR+.05*\n;}]
\newcommand*\smallR{1}
\newcommand*\segments{60}
\pgfmathsetmacro\deltaAngle{360/\segments}
\newcommand*\startAngle{-\deltaAngle}
\newcommand*\endRadius{\smallR}
\foreach \iN[evaluate={
\startAngle=\startAngle+\deltaAngle;
\endRadius=\endRadius+.05;},% or bigR \iN
remember=\endRadius,
remember=\startAngle] in {1,...,\segments}
\filldraw[fill=gray!50] (\startAngle:\endRadius)
arc [radius=\endRadius, start angle=\startAngle, delta angle=\deltaAngle]
-- (\startAngle+\deltaAngle:\smallR)
arc [radius=\smallR, end angle=\startAngle, delta angle=-\deltaAngle] -- cycle;
\node {$\phi^2$};
\node at (north west:{sqrt 2 * bigR(\segments/2)}) {$\{\Omega\}_{i=1}^n$};
\node[rotate=-\deltaAngle/2, right] at (-\deltaAngle/2:bigR \segments) {$\partial \varphi$};
\end{tikzpicture}
\end{document}
Output 1

Code 2
\documentclass[tikz]{standalone}
\usetikzlibrary{qrr.misc}
\begin{document}
\begin{tikzpicture}[
declare function={smallR=1; bigR(\n)=smallR+.05*\n; segments=20;},
full arc=segments]% same as \degrees[segments] in PSTricks
\foreach \iN[evaluate={\endRadius=bigR(\iN+1);}, use int=0 to segments-1]
\filldraw[fill=gray!50] (\iN R:\endRadius)
arc [radius=\endRadius, start angle=+\iN R, delta angle=+1R]
-- (\iN R+1R:smallR)
arc [radius=smallR, end angle=\iN R, delta angle=-1R] -- cycle;
\node {$\phi^2$};
\node at (north west:{sqrt 2 * bigR(segments/2)}) {$\{\Omega\}_{i=1}^n$};
\node[rotate=-.5R, right] at (-.5R: bigR segments) {$\partial \varphi$};
\end{tikzpicture}
\begin{tikzpicture}[
declare function={smallR=1; bigR(\n)=smallR+.05*\n; segments=20;},
full arc=segments]
\filldraw[fill=gray!50] (right:smallR)
\foreach \iN[evaluate={\endRadius=bigR(\iN+1);}, use int=0 to segments-1] {
-- (\iN R:\endRadius) arc[radius=\endRadius, start angle=\iN R, delta angle=1R]}
-- (right:smallR) arc[radius=smallR, start angle=0, delta angle=-360];
\node {$\phi^2$};
\node at (north west:{sqrt 2 * bigR(segments/2)}) {$\{\Omega\}_{i=1}^n$};
\node[rotate=-.5R, right] at (-.5R: bigR segments) {$\partial \varphi$};
\end{tikzpicture}
\end{document}
Output 2


Code 3
\documentclass[tikz]{standalone}
\begin{document}
\foreach \segments in {1,...,60}{
\begin{tikzpicture}[declare function={smallR=1; bigR(\n)=smallR+.05*\n; segments=\segments;
arcAngle(\i,\n)=360/\n*\i;}]
\useasboundingbox (-bigR 45,-bigR 50) rectangle (bigR 60,bigR 45) ++ (right:1.7em);
\foreach \iN[evaluate={
\startAngle=arcAngle(\iN-1, segments);
\endAngle=arcAngle(\iN, segments);
\endRadius=bigR(\iN);}] in {1, ..., \segments}
\filldraw[fill=gray!50] (\startAngle:\endRadius)
arc [radius=\endRadius, start angle=\startAngle, end angle=\endAngle]
-- (\endAngle:smallR)
arc [radius=smallR, start angle=\endAngle, end angle=\startAngle] -- cycle;
\node {$\phi^2$};
\node at (-{bigR(segments/2)}, {bigR(segments/2)}) {$\{\Omega\}_{i=1}^n$};
\node at ({bigR(segments/2)}, {bigR(segments/2)}) {$n = \segments$};
\node at ({-arcAngle(1, segments)/2}: {bigR(segments)})
[rotate={-arcAngle(1, segments)/2}, right] {$\partial \varphi$};
\end{tikzpicture}}
\end{document}
Output 3

(I'm always amazed how fast and comprehensive the answers here are.)
– klingt.net Nov 11 '13 at 09:42