Consider the following code to draw the Theodorus' spiral.
\documentclass[pstricks,border=12pt]{standalone}
\usepackage{pstricks-add}
\begin{document}
\begin{pspicture}[showgrid](-5,-5)(5,5)
\psset{linecolor=blue}
\pstVerb{/Angles 0 def}
\psStartPoint(0,0)
\psVector[arrows=-](1,0)
\multido{\i=1+1}{15}
{% why is % needed here?
\pstVerb{Angles 1 \i\space 1 sub sqrt atan add /Angles exch def}
\psVector[arrows=-](!1 Angles PtoC)
\psline(! cp.X cp.Y)
}
\end{pspicture}
\begin{pspicture}[showgrid](-5,-5)(5,5)
\psset{linecolor=red}
\def\points{(0,0)(1,0)}%
\pstVerb{/Angles 0 def}
\multido{\i=1+1}{15}
{
\xdef\points{\points(!1 Angles 1 \i\space 1 sub sqrt atan add dup /Angles exch def PtoC)}
}
\expandafter\psrline\points
\end{pspicture}
\end{document}
Explanation
The first approach with psStartPoint and \psVector,
\begin{pspicture}[showgrid](-5,-5)(5,5)
\psset{linecolor=blue}
\pstVerb{/Angles 0 def}
\psStartPoint(0,0)
\psVector[arrows=-](1,0)
\multido{\i=1+1}{15}
{% why is % needed here?
\pstVerb{Angles 1 \i\space 1 sub sqrt atan add /Angles exch def}
\psVector[arrows=-](!1 Angles PtoC)
\psline(! cp.X cp.Y)
}
\end{pspicture}
produces

and the second approach with \psrline,
\begin{pspicture}[showgrid](-5,-5)(5,5)
\psset{linecolor=red}
\def\points{(0,0)(1,0)}%
\pstVerb{/Angles 0 def}
\multido{\i=1+1}{15}
{
\xdef\points{\points(!1 Angles 1 \i\space 1 sub sqrt atan add dup /Angles exch def PtoC)}
}
\expandafter\psrline\points
\end{pspicture}
produces incomplete output as follows.

Question
How can I draw a line from the origin to the last point of \psrline invoked for each iteration?
I have tried the following but (!cp.X cp.Y) does not exist.
\begin{pspicture}[showgrid](-5,-5)(5,5)
\psset{linecolor=red}
\def\points{(0,0)(1,0)}%
\pstVerb{/Angles 0 def}
\multido{\i=1+1}{15}
{
\xdef\points{\points(!1 Angles 1 \i\space 1 sub sqrt atan add dup /Angles exch def PtoC)}
\expandafter\psrline\points
\psline(! cp.X cp.Y)
}
\end{pspicture}