3

My MWE:

\documentclass{beamer}
\usepackage[english]{babel}
\usepackage{calc}
\usepackage[absolute,overlay]{textpos}
\usepackage{pdfsync}
\mode<presentation>
\usetheme{Antibes}

% Define the title of each inserted pre-subsection frame
\newcommand*\titleSubsec{Next Subsection}
% Define the title of the "Table of Contents" frame
\newcommand*\titleTOC{Outline}

\begin{document}

\section{Section 1}

\begin{frame}\frametitle{Lyapunov Theory}

\begin{theorem}[LaSalle-Yoshizawa]
\tiny
Let $\boldsymbol{x}_e$ be an equilibrium point of:
\begin{equation} \label{eq:LaSalle}
\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
\end{equation}

Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
\begin{enumerate}
\item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
\item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
\item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
\end{enumerate}

where $W(\boldsymbol{x})$ is a continuous function. Then:
\begin{equation}
\lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0 \,.
\end{equation}

In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalle}) is globally uniformly asymptotically stable. \vspace{-0.5cm} 
\end{theorem} 


\end{frame}

\end{document}

The result:

enter image description here

As can be seen, the block size is not large enough to comprehend all the text. Now how can I make the standard text size within this specific block smaller (like I already did using \tiny) while fitting all text inside the block?

Pietair
  • 1,731

1 Answers1

4

The issue of \vspace{<len>} in the last line of your theorem is the cause of the problem.

The paragraph In addition, ... is set in horizontal mode. And, while in this mode, it encounters the \vspace{<len>}. This is then stored until TeX switches to vertical mode before it's actually used. Vertical mode is reached at the \end{theorem}, at which time the vertical height of the theorem box is actually reduced by your <len>.

The obvious solution is to remove the \vspace{<len>} insertion.


I'd suggest perhaps a different layout, since cross-referencing in a presentation is actually difficult to follow. Since there is no reference to (2), write the equation inline, which provides more vertical space to fit on the slide. Also, you may want to reduce the vertical skip before/after equations just for this slide:

enter image description here

\documentclass{beamer}
\let\Tiny\tiny% http://tex.stackexchange.com/a/94159/5764
\usetheme{Antibes}

\begin{document}

\section{Section 1}

\begin{frame}
  \frametitle{Lyapunov Theory}

  \begin{theorem}[LaSalle-Yoshizawa]
    \footnotesize
    Let $\boldsymbol{x}_e$ be an equilibrium point of:
    \begin{equation}
      \label{eq:LaSalleA}
      \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
    \end{equation}

    Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
    \begin{enumerate}
      \item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
      \item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
      \item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
    \end{enumerate}

    where $W(\boldsymbol{x})$ is a continuous function. Then:
    \begin{equation}
      \lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0 \,.
    \end{equation}

    In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalleA}) 
    is globally uniformly asymptotically stable.
  \end{theorem} 

\end{frame}

\begin{frame}
  \frametitle{Lyapunov Theory}

  \begin{theorem}[LaSalle-Yoshizawa]
    \setlength{\abovedisplayskip}{.5\abovedisplayskip}%
    \setlength{\belowdisplayskip}{.5\belowdisplayskip}%
    Let $\boldsymbol{x}_e$ be an equilibrium point of:
    \begin{equation}
      \label{eq:LaSalleB}
      \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},t) \,.
    \end{equation}

    Let $\mathcal{V}$ be a continuously differentiable function $\mathcal{V}(\boldsymbol{x})$ satisfying:
    \begin{enumerate}
      \item $\mathcal{V}(\boldsymbol{x}) > 0$ and $\mathcal{V}(\boldsymbol{0}) = 0 \,;$
      \item $\mathcal{V}(\boldsymbol{x}) \to \infty$ as $|\boldsymbol{x}| \to \infty \,;$
      \item $\dot{\mathcal{V}} =  \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x},t) \leq - W(\boldsymbol{x}) \leq 0 \,,$
    \end{enumerate}

    where $W(\boldsymbol{x})$ is a continuous function. Then $\lim_{t \to \infty} W(\boldsymbol{x}(t)) = 0$.
    In addition, if $W(\boldsymbol{x}) > 0$, then the equilibrium point $\boldsymbol{x}_e$ of system~(\ref{eq:LaSalleB}) 
    is globally uniformly asymptotically stable.
  \end{theorem} 

\end{frame}

\end{document}

The second frame uses \normalsize as the font making it fit better with the rest of the presentation.

Werner
  • 603,163