Can anyone help me fix this problem?
Actually, there is no need to have 1(b), 1(d), 1(f) and 1(h) since they are deriving from the last line. Can I have just four subequations?
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{subequations}
\begin{alignat}{4}
E_{11}&=Q_{11}^2\ln\sqrt{B'_{11}} +Q_{12}^2\ln\sqrt{B'_{22}}+Q_{13}^2\ln\sqrt{B'_{33}}\\
&=Q_{11}^2\ln\sqrt{B'_{11}}+Q_{21}^2\ln\sqrt{B'_{33}}\\
E_{12}&=Q_{11}Q_{21}\ln\sqrt{B'_{11}} +Q_{12}Q_{22}\ln\sqrt{B'_{22}}+Q_{13}Q_{23}\ln\sqrt{B'_{33}} \\
&=Q_{11}Q_{21}\ln\sqrt{B'_{11}}-Q_{11}Q_{21}\ln\sqrt{B'_{33}}\\
E_{22}&=Q_{21}^2\ln\sqrt{B'_{11}} +Q_{22}^2\ln\sqrt{B'_{22}}+Q_{23}^2\ln\sqrt{B'_{33}}\\
&=Q_{21}^2\ln\sqrt{B'_{11}} +Q_{11}^2\ln\sqrt{B'_{33}}\\
E_{33}&=Q_{31}^2\ln\sqrt{B'_{11}} +Q_{32}^2\ln\sqrt{B'_{22}}+Q_{33}^2\ln\sqrt{B'_{33}}\\
&=Q_{32}^2\ln\sqrt{B'_{22}}
\end{alignat}
\label{straincomponent}
\end{subequations}
\end{document}



\label{straincomponent}next to\begin{subequations}, where it's more easily seen; it changes nothing in the output, of course. – egreg Mar 13 '15 at 17:24