2

I want to write an algorithm such that what I have attached, I am somehow elementary in writing algorithms with latex. I do not want the exact answer, only a tip or an example similar to what I have attached.

algorithm written in table

Alenanno
  • 37,338

1 Answers1

2

You can do any one of the following:

  1. Place the algorithms each in its own minipage environment:

    \begin{minipage}{.5\textwidth}
      \begin{algorithm}[H]% Left algorithm
        ...
      \end{algorithm}
    \end{minipage}%
    \begin{minipage}{.5\textwidth}
      \begin{algorithm}[H]% Right algorithm
        ...
      \end{algorithm}
    \end{minipage}%
    
  2. Place the algorithms inside the columns of a larger table.

I've chosen (2) above to produce this (with the help of booktabs:

enter image description here

Symbols and other notation may have to change. It's just to give you an idea of what could be done.


Spoiler alert:

\documentclass{article}

\usepackage[margin=1in]{geometry}% Just for this example

\usepackage[lined]{algorithm2e}
\usepackage{amsmath,tabularx,booktabs}

\DontPrintSemicolon

\newcommand{\vectnotation}[1]{\textbf{\textit{#1}}}
\DeclareMathOperator{\Vect}{vec}
\newcommand{\vect}[1]{\Vect(#1)}
\newcommand{\assign}{\leftarrow}
\newcommand{\To}{\textup{\textbf{to}}}

\begin{document}

\noindent
\begin{tabularx}{\textwidth}{XX}
  \toprule
  \multicolumn{2}{p{\dimexpr\textwidth-2\tabcolsep}}{\refstepcounter{algocf}\AlCapSty{\AlCapFnt\algorithmcfname\nobreakspace\thealgocf:}
    Efficient application of the wavelet dictionary by the Horner's rule.} \\
  \midrule
  \begin{algorithm}[H]
    Forward operator $(y = \vectnotation{D} \vect{\vectnotation{X}})$\;
    $\vectnotation{R} \assign \mathbf{1} \otimes \vectnotation{X}(N,:)$\;
    \For{$n \assign 2$ \To{} $N$}{
      $\vectnotation{P} \assign \mathbf{1} \otimes \vectnotation{X}(N-n+1,:)$\;
      $\vectnotation{R} \assign \vectnotation{R} \circ \vectnotation{Z} + \vectnotation{P}$\;
    }
    $\vectnotation{y} \assign \vectnotation{F}^{-1}(\hat{\vectnotation{w}} \circ \vectnotation{R}\mathbf{1})$\;
  \end{algorithm} &
  \begin{algorithm}[H]
    Adjunct operator $(\vect{\tilde{\vectnotation{X}}} = \vectnotation{D}^{T} \vectnotation{y})$\;
    $\mathbf{\rho} \assign \vectnotation{y}^{T} \vectnotation{W}\vectnotation{F}$\;
    $\vectnotation{L} \assign N \times M$ all-ones matrix\;
    \For{$n \assign 2$ \To{} $N$}{
      $\tilde{\vectnotation{X}}(n,:) \assign \mathbf{\rho} \vectnotation{L}$\;
      $\vectnotation{L} \assign \vectnotation{Z}^{\star} \circ \vectnotation{L}$\;
    }
  \end{algorithm} \\[-\normalbaselineskip]
  \bottomrule
\end{tabularx}

\end{document}
Werner
  • 603,163