1

enter image description here

Someone know a package that permit to write natural deduction in this linear form with this kind of strokes? Thank you! P.S. The example of ND is from Jan von Plato's book, Elements of logical reasoning.

Matteo
  • 99

1 Answers1

2

A bit late, but here is a solution with pstricks. The idea is to add empty nodes (\pnodes) at suitable places in a tabular environment, then connect them with \ncbar node connections. You can look at the pst-node package documentation for details.

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fourier}

\usepackage{array}
\usepackage{pstricks-add}
\usepackage{auto-pst-pdf}

\newcommand\lAnd{\mathrel{\&}}

\begin{document}

\begin{postscript}
  \psset{angle=180, linewidth=0.6pt}
  \renewcommand\arraystretch{1.25}
  \newcounter{tabenum}\setcounter{tabenum}{0}
  \newcommand{\tabitem}{\refstepcounter{tabenum} \thetabenum.}
  \begin{tabular}{r@{\enspace}>{$}l<{$}@{\qquad}l}
    \pnode(-0.4em,0.6ex){H1}\tabitem & A\lAnd B & hypothesis: goal $\neg\neg A\lAnd\neg\neg B$ \\
    \tabitem & A & $1,\lAnd E$ \\
    \tabitem & B & $1, \lAnd E$ \\
    \pnode(-0.4em,0.6ex){H2}\tabitem & \neg A & hypothesis: goal $\bot$ \\
    \tabitem & \bot & $4, 1, \subset E$ \\
    \tabitem & \neg\neg A \pnode(0, 2.25ex){G2} & $4{-}5, \subset I$ \\
    \pnode(-0.4em,0.6ex){H3}\tabitem & \neg B & hypothesis: goal $\bot$ \\
    \tabitem & \bot & $7, 3, \subset E$ \\
    \tabitem & \neg\neg B \pnode(0, 2.25ex){G3} & $7{-}8, \subset I$ \\
    \tabitem & \neg\neg A\lAnd\neg\neg B & $6, 9, \lAnd I$ \\
    \tabitem & A\lAnd B \supset \neg\neg A\lAnd\neg\neg B \pnode(0, 2.3ex){G1}
  \end{tabular}%\end{listliketab}
  \ncbar[armA=20pt]{H1}{G1}
  \ncbar{H2}{G2}
  \ncbar{H3}{G3}
\end{postscript}

\end{document}

enter image description here

Bernard
  • 271,350