For simple and very smooth curves you can fake a simple derivative action as in Derivative of a tikz path?
However TeX is not the place to do these CAS computations. If you have the closed form curves then you can plug the formulas into pgfplots otherwise it will always fail at some point.
\documentclass[tikz]{standalone}
\pgfdeclaredecoration{approxderiv}{initial}{%
\state{initial}[width=0.01mm,
persistent postcomputation={%
\def\tempa{0}%
\pgfmathsetmacro{\plen}{(\pgfdecoratedpathlength-0.01mm)/500}%
\def\myderivlist{}%
},next state=walkthecurve]{}%do nothing
\state{walkthecurve}[width=\plen pt,
persistent postcomputation={%
\pgfmathparse{(sin(\pgfdecoratedangle))}\xdef\tempb{\pgfmathresult}%
\pgfmathparse{abs(cos(\pgfdecoratedangle))*\plen}%
\expandafter\xdef\expandafter\myderivlist\expandafter{%
\myderivlist --++ ({\pgfmathresult pt},{(\tempb-\tempa)*(1cm)})%
}%
\xdef\tempa{\tempb}%
}
]{}%do nothing
}
\begin{document}
\begin{tikzpicture}
\draw[style=help lines] (0,-7) grid[step=5mm] (6,2.5);
\draw[decoration=approxderiv,postaction={decorate}] (0,0) ..controls (2,2) and (1,1) .. (3,0);
\draw[red,decoration=approxderiv,postaction={decorate}] (0,-3) \myderivlist;
\draw[blue] (0,-6) \myderivlist;
\end{tikzpicture}
\end{document}
