1

I am trying to draw unfolding regular pentagon. I have got a really great example her: Regular pentagon. And the code is:

\newcommand{\downpent}[2][blue!50!gray,draw=white,thick]% [options], list of direction steps e.g {10/2/1/1}
{   
\coordinate (temp) at (0,0);
\foreach \p in {#2}
{   \foreach \s in \p
    {   \coordinate (temp) at ($(temp)+(\s*36-18:1)$);
    }
    \fill[#1] ($(temp)+(54:0.618)$) -- ($(temp)+(126:0.618)$) -- ($(temp)+(198:0.618)$) -- ($(temp)+(270:0.618)$) -- ($(temp)+(342:0.618)$) -- cycle;
    \coordinate (temp) at (0,0);
}
}
 \newcommand{\uppent}[2][blue!50!gray,draw=white,thick]% [options], list of coordinates e.g {1,2},{1,3},{4,2}
{   
\coordinate (temp) at (0,0);
\foreach \p in {#2}
{   \foreach \s in \p
    {   \coordinate (temp) at ($(temp)+(\s*36-18:1)$);
    }
    \fill[#1] ($(temp)+(-54:0.618)$) -- ($(temp)+(-126:0.618)$) -- ($(temp)+(-198:0.618)$) -- ($(temp)+(-270:0.618)$) -- ($(temp)+(-342:0.618)$) -- cycle;
    \coordinate (temp) at (0,0);
}
}

\begin{tikzpicture} \downpent[orange,draw=white,thick]{{2},{4},{6},{8},{10},{10,1,10}} \uppent[cyan!50!blue,draw=white,thick]{{},{10,1},{10,1,10,3},{10,1,10,1},{10,1,10,9},{10,1,10,7}} \foreach \a [count=\c] in {18,54,...,342} \draw[->,thick] (0,0) -- (\a:1cm) node[label=\a:\c] {}; \end{tikzpicture}

Which gives me this picture

enter image description here

Now, The question is how I can draw the unfolded regular pentagon? I am sorry about my tikz and latex skill. I am new learner. Any help or suggestion will be appreciated.

  • What you mind with "unfolded"? Something as you can see in (recent version of) TikZ manual on the top of page 700? – Zarko May 10 '16 at 11:53
  • I mean redrawing the pentagon. – Mohammad Saifullah May 10 '16 at 12:25
  • If you fold up the above you will get a duodecahecron (see https://en.wikipedia.org/wiki/Regular_dodecahedron) The easiest way to draw it would be to use 3D coordinates. See also http://tex.stackexchange.com/questions/144193/how-do-i-put-a-die-roll-at-the-top-of-each-page/144474?s=1|0.5092#144474 – John Kormylo May 10 '16 at 14:49

0 Answers0