Try this, perhaps!
\documentclass{article}
\usepackage{amsmath}
\usepackage{alphalph}
\usepackage{etoolbox}
\newcommand{\alphalphval}[1]{\alphalph{\value{#1}}}
\AtBeginDocument{%
\AtBeginEnvironment{subequations}{%
\let\alph\alphalphval%
}
}
\begin{document}
\begin{subequations}
\begin{align}
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c
\end{align}
\end{subequations}
\end{document}
Update with a different style:
In order to get the aa,bb,cc style, it's necessary to use \newalphalph to define a new style, say, \aalphalph (see the code for the precise definitionand let\alphuse\aalphalph` then.
\documentclass{article}
\usepackage{amsmath}
\usepackage{alphalph}
\usepackage{etoolbox}
\makeatletter
\newalphalph{\aalphalph}[mult]{\alphalph@alph}{26}
\newcommand{\alphalphval}[1]{%
\@ifundefined{c@#1}{% check first if #1 is a counter (\c@#1)
\aalphalph{#1}% No, it's most likely the direct value
}{%
\aalphalph{\value{#1}}% It's a counter, so use \value{#1}
}
}
\makeatother
\AtBeginEnvironment{subequations}{%
\let\alph\alphalphval%
}
\begin{document}
\begin{subequations}
\begin{align}
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c \\
f(x) &= ax^2 + bx + c
\end{align}
\end{subequations}
\end{document}

MWEmeans minimal working example, i.e. a compilable document that shows the issue or is suited as a starter to add a requested feature. – Jun 01 '16 at 21:49