The LaTeX kernel (fontmath.ltx) defines the symbols the following way:
\DeclareMathDelimiter{<}{\mathopen}{symbols}{"68}{largesymbols}{"0A}
\DeclareMathDelimiter{>}{\mathclose}{symbols}{"69}{largesymbols}{"0B}
...
\DeclareMathDelimiter{\rangle}
{\mathclose}{symbols}{"69}{largesymbols}{"0B}
\DeclareMathDelimiter{\langle}
{\mathopen}{symbols}{"68}{largesymbols}{"0A}
Thus, it is possible to define < and > the same way as \langle and \rangle:
\documentclass{article}
\DeclareMathDelimiter{<}{\mathopen}{symbols}{"68}{largesymbols}{"0A}
\DeclareMathDelimiter{>}{\mathclose}{symbols}{"69}{largesymbols}{"0B}
\begin{document}
$M< x >$
\end{document}

The next example safes the less and greater signs in macros \less and \greater for the case they are needed:
\documentclass{article}
\mathchardef\less=\mathcode`<
\mathchardef\greater=\mathcode`>
\DeclareMathDelimiter{<}{\mathopen}{symbols}{"68}{largesymbols}{"0A}
\DeclareMathDelimiter{>}{\mathclose}{symbols}{"69}{largesymbols}{"0B}
\begin{document}
$1 \greater 0 \less M< x >$
\end{document}

Other math fonts may have different symbol encodings. Example for MnSymbol:
\documentclass{article}
\usepackage{MnSymbol}
\mathchardef\less=\mathcode`<
\mathchardef\greater=\mathcode`>
\DeclareMathDelimiter{<}{\mathopen}{largesymbols}{'140}{largesymbols}{'140}
\DeclareMathDelimiter{>}{\mathclose}{largesymbols}{'145}{largesymbols}{'145}
\begin{document}
$1 \greater 0 \less M< x >$
\end{document}

A more automatic solution, which assumes that \langle and \rangle are defined by LaTeX's \DeclareMathDelimiter with a definition text as \delimiter" followed by 7 hexadecimal digits. Then the values for the math category code for the redefined < and > can be extracted from the definition of \langle and \rangle. Packages like MnSymbol, mathabx, txfonts works then out of the box (if they are loaded before).
\documentclass{article}
\usepackage{txfonts}
\mathchardef\less=\mathcode`<
\mathchardef\greater=\mathcode`>
\def\tmp{\delimiter"}
\edef\tmp{\meaning\tmp}
\expandafter\def\expandafter\ScanDelimiterDefinition\tmp#1#2#3#4#5\relax#6{%
\mathcode`#6="#1#2#3#4\relax
}
\expandafter\ScanDelimiterDefinition\meaning\langle\relax<
\expandafter\ScanDelimiterDefinition\meaning\rangle\relax>
\begin{document}
$1 \greater 0 \less M< x >$
\end{document}

\newcommand{\domain}[1]{M\langle #1\rangle}. Using\domain{x}seems pretty readable to me. – Werner Nov 11 '16 at 17:30