I have a problem that has already been reported here, but I checked and I don't see any \begin{align} not closed through \end{align}.
Another thing that's bothering me is the E for the expected value, it looks different than the ones I saw on article or the one on Wikipedia.
\documentclass[a4paper,11pt,twoside] {book}
\usepackage{hyperref}
\usepackage[latin1]{inputenc}
\usepackage[french]{babel}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{array}
\usepackage{geometry}
\usepackage{xspace}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{bbold}
\begin{document}
\chapter[Nom court chapitre]{My chapter}
$P=\sum_{i=1}^{r} \sum_{j=1}^{N_{i}} \mathbb 1_{T_{j}^{i}\geqslant 1}X_{i}$
$F_{1}(1) =\sum_{i=1}^{r} M_{i}(S_{i}(1)-K_{i})$
\begin{align}
P-F_{1}(1) &=\sum_{i=1}^{r} \sum_{j=1}^{N_{i}} \mathbb 1_{T_{j}^{i}\geqslant 1}X_{i} -\sum_{i=1}^{r} M_{i}(S_{i}(1)-K_{i}) \\
&= \sum_{i=1}^{r} (\sum_{j=1}^{N_{i}} \mathbb 1_{T_{j}^{i}\geqslant 1}X_{i}-M_{i}(S_{i}(1)-K_{i}))
\end{align}
donc
\begin{align}
Var(P-F_{1}(1)) &=Var(P) + Var(\sum_{i=1}^{r} M_{i}(S_{i}(1)-K_{i})) -2Cov(P,F_{1}(1)) \\
&=Var(P) + \sum_{i=1}^{r} M_{i}^2Var(S_{i}(1)) -2Cov(\sum_{i=1}^{r} \sum_{j=1}^{N_{i}} \mathbb 1_{T_{j}^{i} \geqslant 1}X_{i},\sum_{i=1}^{r} M_{i}(S_{i}(1))) \\
&=Var(P) + \sum_{i=1}^{r} M_{i}^2Var(S_{i}(1)) - 2(\mathbb{E}[\sum_{i=1}^{r} \sum_{j=1}^{N_{i}} \mathbb 1_{T_{j}^{i} \geqslant 1}X_{i}\sum_{l=1}^{r} M_{l}(S_{l}(1))]-\mathbb{E}[P]\mathbb{E}[\sum_{i=1}^{r} M_{i}(S_{i}(1))]) \\
&=Var(P) + \sum_{i=1}^{r} M_{i}^2Var(S_{i}(1)) - 2(\sum_{i=1}^{r}\sum_{j=1}^{N_{i}}\sum_{l=1}^{r} X_{i}M_{l} \mathbb{E}[\mathbb 1_{T_{j}^{i} \geqslant 1}S_{l}(1)]-\mathbb{E}[P]\mathbb{E}[\sum_{i=1}^{r} M_{i}(S_{i}(1))]
\end{align}
Comme la fonction de survie est stochastique, les termes d'espérance et variance de P doivent être détaillés:
\begin{align}
\mathbb{E}[\mathbb 1_{T_{j}^{i}\geqslant 1}S_{l}(1)]&=\mathbb{E}[\mathbb{E}[\mathbb 1_{T_{j}^{i}\geqslant 1}S_{l}(1)/]\kappa_{1}^((1)),\kappa_{1}^((2))] \\
&=\mathbb{E}[S_{l}(l)\mathbb{E}[\mathbb 1_{T_{j}^{i}/\kappa_{1}^((1)),\kappa_{1}^((2))]
\end{align}
Nous avons également que
\begin{align}
\mathbb{E}[P] &=\sum_{i=1}^{r} X_{i} \sum_{j=1}^{N_{i}} \mathbb{E}[\mathbb 1_{T_{j}^{i}\geqslant 1}] \\
&=\sum_{i=1}^{r} X_{i} \sum_{j=1}^{N_{i}} \mathbb{E}[\mathbb{E}[\mathbb 1_{T_{j}^{i}\geqslant 1}/S_{i}(1)]] \\
&=\sum_{i=1}^{r} X_{i} \sum_{j=1}^{N_{i}} \mathbb{E}[\mathbb{P}[T_{j}^{i}\geqslant 1/S_{i}(1)]] \\
&=\sum_{i=1}^{r} X_{i} \sum_{j=1}^{N_{i}} \mathbb{E}[S_{i}(1)]\\
&=\sum_{i=1}^{r} X_{i}N_{i}\mathbb{E}[S_{i}(1)]
\end{align}
Or nous savons que \\
\begin{center}
$Var(P)= \mathbb{E}[Var(P/S(1))] + Var(\mathbb{E}[P/S(1)])$
\end{center}
\end{document}


}missing in the last line of the thirdalignenvironment:&=\mathbb{E}[S_{l}(l)\mathbb{E}[\mathbb 1_{T_{j}^{i}/\kappa_{1}^((1)),\kappa_{1}^((2))]– esdd Mar 17 '17 at 09:39\kappa_{1}^((2))should probably be\kappa_{1}^{(2)}– egreg Mar 17 '17 at 09:51