I combined 2 columns in the last row. How do I make the text in the form of bullets, start from the beginning of the row and not leave so much blank space? Also, how do I get rid of the space at the bottom of a row? Thanks in advance!
\documentclass[8pt]{article}
\usepackage{array}
\usepackage{pdflscape}
\usepackage{comment}
\usepackage{graphicx}
\usepackage{easytable}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{rotating}
\usepackage{makecell}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{multirow,hhline,graphicx,array}
\usepackage[margin=0.5in]{geometry}
%\DeclareMathSizes{8}{16}{16}{8}
\newcommand{\x}{\mathbf{x}}
\newcommand{\g}{\mathbf{g}}
\newcommand{\h}{\mathbf{h}}
\newcommand{\0}{\mathbf{0}} %<- that's not a good idea
\newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}
\begin{document}
\aboverulesep=0ex
\belowrulesep=0ex
%\renewcommand{\arraystretch}{5}
\newgeometry{margin=0.1cm}
\begin{landscape}
% Table generated by Excel2LaTeX from sheet 'Sheet1'
\begin{table}[htbp]
\centering
\caption{Add caption}
\begin{tabular}{|p{0.7em}| p{0.7em}|p{20em}|p{21em}|p{21em}|}
\cmidrule{3-5} \multicolumn{1}{c}{}
&
&
\makecell{\textbf{Unconstrained} \\ $\underset{\x\in\mathbb{R}^n}
{\mathrm{minimize}}\ f(\x)$}
&
\makecell{\textbf{Constrained: Reduced Form} \\
$\underset{\x\in\mathbb{R}^n}{\mathrm{minimize}}\ f(\x)$ \\
$\mathrm{subject\ to\ } \h(\x)=\0 $}
&
\makecell{\textbf{Constrained: Lagrangian Form} \\
$\underset{\x\in\mathbb{R}^n}{\mathrm{minimize}}\ f(\x)$ \\
$\mathrm{subject\ to\ } \h(\x)=\0,\g(\x)\leq\0$ }
\\
\midrule
\multirow{2}{*}{\rotatebox[origin=r]{90}{\makecell{Local Optimality
Conditions~~~~~~~~~~~~~~~~~~~~~~~~~~~~}}} & \multicolumn{1}{p{0.7em}|}
{\rotatebox[origin=r]{90}{\ First Order Necessary~~~~~~\ }}
&
At a local minimizer, the gradient of the objective function must be zero
\[
\nabla f(\x_\dagger)=\0
\]
&
At a local minimizer, the reduced gradient must be zero if $\partial
h/\partial s$ is invertible.
\[
\nabla_d f_R (x_{\dagger})=0
\]
\[
h(x_{\dagger})=0
\]
\[
\text{where } x= \begin{bmatrix}
d\\s
\end{bmatrix}
,\nabla_d f_R (x_{\dagger})=\frac{\partial f}{\partial d}-\frac{\partial f}
{\partial s} \bigg( \frac{\partial h}{\partial s} \bigg )^{-1}\frac{\partial
h}{\partial d}
\]
&
At a local minimizer, the KKT conditions must be satisfied if the point is
regular (i.e.: if the linear independence constraint qualification (LICQ) is
satisfied: if $\nabla h_{\dagger}(x_{*})$ has independent rows).
\[
\nabla _x L(x_{\dagger})=0
\]
\[
h(x_{\dagger})=0,g(x_{\dagger})≤0
\]
\[
\mu_{\dagger}^⊤ g(x_{\dagger})=0
\]
\[
\mu_{\dagger}≥0
\]
\[
\text{where } L(x_{\dagger})=f(x_{\dagger})+\lambda^⊤ h(x_{\dagger})+μ^⊤
g(x_{\dagger})
\]
\\
\cmidrule{2-5} \multicolumn{1}{|c|}{}
&
\multicolumn{1}{p{0.7em}|}{\rotatebox[origin=r]{90}{\ Second Order
Sufficiency~~~~~~~~\ }}
&
If the Hessian of the objective function is positive definite at a point
where the gradient is zero, the point is a local minimum.
\[
\partial x^T\nabla^2f(x_{*})\partial x>0
\]
\[
\forall \partial x \neq 0
\]
A Hessian matrix is positive definite if all of its eigenvalues are
positive.
&
If the reduced Hessian is positive definite at a point where the reduced
gradient is zero, the point is a local minimum.
\[
\partial d^⊤ \nabla_d^2 f_R (x_{*})\partial d>0, \forall \partial d \neq 0
\]
\[
\text{where }\nabla_d^2 f_R (x_{*})=A \frac{\partial ^2 f}{\partial x^2}
A^{T}+ \frac{\partial f}{\partial s} \frac{\partial ^2 s}{\partial d^2}
\]
\[
A=
\bigg[
I \hspace{2mm}\bigg({\frac{\partial s}{\partial d}\bigg)}^T
\bigg]
, \frac{\partial^2 s}{\partial d^2} =-\bigg(\frac{\partial h}{\partial
s}\bigg)^{-1} A \frac{\partial^2 h}{\partial x^2} A^{T}
\]
&
If the Hessian of the Lagrangian is positive definite on the subspace
tangent to the active constraints at a KKT point, the point is a local
minimum.
\[
\partial x^T\nabla^2_x L(x_{*})\partial x>0
\]
\[
\forall \partial x \neq 0: \nabla_x h_{\dagger}(x_{*})\partial x = 0
\]
\[
\text{where }h_{\dagger}(x_{*}) = [h(x_{*})^T, g_j(x_{*})\forall
j:\mu_j>0]^T
\]
A Hessian matrix is positive definite on the subspace tangent to the
active constraints if the last n-m leading principle minors of the
bordered Hessian $\begin{bmatrix}
0 & \nabla h\\ \nabla h^T & \nabla^2_x L
\end{bmatrix}$have sign $(-1)^m$, where m is the number of active
constraints.
\\
\midrule
\multicolumn{1}{|p{1.4em}|}{\rotatebox[origin=r]{90}{\makecell{\ Global Optimality Conditions~~~~~~~}\ }}
&
\multicolumn{1}{p{1.4em}|}{\rotatebox[origin=r]{90}{\makecell{\
Convexity~~~~~~~~~~~~~~~~~~}\
}}
&
\begin{itemize}
\item For convex functions, if a point is a local minimum it is also the
global minimum and a local minimizer is also a global minimizer (not
necessarily the only one).
\item If the objective function is nonconvex, it may or may not have
multiple local minima.
\item A convex function* is a function whose Hessian is positive
semidefinite for all x.
\item A Hessian matrix is positive semidefinite if all of its eigenvalues
are nonnegative.
\end{itemize}
&
\multicolumn{1}{c}{}
&
\begin{itemize}
\item A convex optimization problem is a problem in negative null form where
f(x) and g(x) are each convex functions and h(x) are affine functions.
\item For convex optimization problems, a local minimum is also the global
minimum, and a local minimizer is also a global minimizer (not necessarily the only one).
\item A nonconvex optimization problem may or may not have multiple
local minima and/or disconnected feasible regions.
\end{itemize}
\\
\bottomrule
\end{tabular}%
\label{tab:addlabel}%
\end{table}%
\end{landscape}
\restoregeometry
\end{document}

multirowwere found by trial and error, and have to be adjusted for another table. The size of the last three columns should be all equal since they're calculatedx bytabularxso the table fits the text width (there might be an artefact due to the finalmulticolumn{2}{p{somewidth}}. – Bernard May 22 '18 at 18:31{|c|c|X|X|>\centering \arraybackslash}X|}(tested). However, I don't think it looks very nice. – Bernard May 23 '18 at 16:23\newcolumntype{Y} {>{\centering\arraybackslash}X}. B.t.w. I 've taken a look at your other table, but I have problems compiling it. I'll post an answer as soon as I can. – Bernard May 23 '18 at 16:52Xcolumns, using in the preamble>{\hsize= some coefficient\hsize}X. The condition is that the sum of the coefficients for theXcolumns in a tabularx be equal to the total number ofXcolumns. For instance, with X columns, the coefficients 0.5 and 1.5 will yield two X columns, of which one is thrice as wide as the other. – Bernard May 23 '18 at 17:25