Fig. 1: Linear, Full Bärnighausen Trees using TikZ Matrix
One descent with coordinate transformation
\documentclass[tikz,border=0.2cm]{standalone}
\usepackage{gu} % for German fraction abbreviations \eh, ...
\usepackage{mwe} % for placeholder pictures
\usepackage[version=4]{mhchem}
\usetikzlibrary{matrix}
\renewcommand{\vec}[1]{\mathbf{#1}}
\begin{document}
\begin{tikzpicture}[>=stealth]
% LEFT:
% * HM Symbol and Structure Designation
% * Kind and Index of Subgroups with Basis Transformations & Origin Shifts
\begin{scope}[
every node/.style={align=center},
every edge/.style = {->,shorten <=1mm,shorten >=1mm},
]
\node (A1) at (0,0) {$P12_1/a1$\\\fbox{\ce{CuF2}}};
\node (A2) at (0,-4) {$P12_1/a1$\\\fbox{\ce{VO2}}};
\draw[->] (A1.south) -- (A2.north) node[midway, fill=white]
{i2\\$\vec{a},\vec{b},2\vec{c}$};
\end{scope}
% CENTER: Wyckoff Tables, Wyckoff Relations, Coordinate Transformations
\begin{scope}[
xshift=2.75cm,
every matrix/.style={
matrix of nodes,
nodes in empty cells,
inner xsep=0pt,
inner ysep=2pt,
row sep =-\pgflinewidth,
column sep = -\pgflinewidth,
nodes={anchor=center,text height=2ex,text depth=0.25ex},
},
]
% Matrix 1
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
column 2/.style = {nodes={minimum width=1.25cm}},
] (M1) at (0,0)
{ Cu: 2b & F: 4e\
$\bar{1}$ & $1$\
0 & 0.295\
0 & 0.297\
\eh & 0.756\
};
% Matrix 1 borders
\draw (M1.south west) rectangle (M1.north east);
\draw (M1-2-1.south -| M1.west) -- (M1-2-1.south -| M1.east);
\draw (M1-1-1.north east |- M1.north) -- (M1-5-1.south east |- M1.south);
% Matrix 2
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
column 2/.style = {nodes={minimum width=1.25cm}},
column 3/.style = {nodes={minimum width=1.25cm}},
] (M2) at (0.61,-4)
{ V: 4e & O: 4e & O: 4e\\
$1$ & $1$ & $1$\\
0.026 & 0.299 & 0.291 \\
0.021 & 0.297 & 0.288 \\
0.239 & 0.401 & 0.894 \\
};
% Matrix 2 borders
\draw (M2.south west) rectangle (M2.north east);
\draw (M2-2-1.south -| M2.west) -- (M2-2-1.south -| M2.east);
\draw (M2-1-1.north east |- M2.north) -- (M2-5-1.south east |- M2.south);
\draw (M2-1-2.north east |- M2.north) -- (M2-5-2.south east |- M2.south);
% Wyckoff changes
\draw[->,shorten >=2mm] (M1-5-1.south) ++ (0,-.2) -- (M2-1-1.north);
\draw[->,shorten >=2mm] (M1-5-2.south) ++ (0,-.2) -- (M2-1-2.north);
\draw[->,shorten >=2mm] (M1-5-2.south) ++ (0,-.2) -- (M2-1-3.north);
% Coordinate transformations
\path (M1.south) -- (M2.north) node[midway,fill=white]
{$x,y,\frac{1}{2}z$; $+(0,0,\frac{1}{2})$};
\end{scope}
% RIGHT: Pictures
\begin{scope}[xshift=7.5cm]
\node (A) at (0,0) {\includegraphics[width=4cm]{example-image-a}};
\node (B) at (0,-4) {\includegraphics[width=4cm]{example-image-b}};
\end{scope}
\end{tikzpicture}
\end{document}

Several descents
\documentclass[tikz,border=0.2cm]{standalone}
\usepackage{gu} % for German fraction abbreviations
\usepackage{amsmath}
\usepackage[version=4]{mhchem}
\usetikzlibrary{matrix,calc}
\renewcommand{\vec}[1]{\mathbf{#1}}
% LINEAR BAERNIGHAUSEN TREE WITH FOUR LEVELS
\begin{document}
\begin{tikzpicture}[>=stealth]
% LEFT:
% * HM Symbol and Structure Designation
% :* kind and index of subgroups with basis transformations & origin shifts
\begin{scope}[
every node/.style={align=center},
every edge/.style = {->,shorten <=1mm,shorten >=1mm},
]
\node (A1) at (0,0) {$P6_3/m2/m2/c$\\\fbox{hex.-closest pack.}};
\node (A2) at (0,-4.5) {$C2/m2/c2_1/m$};
\node (A3) at (0,-7.8) {$C12/c1$};
\node (A4) at (0,-10.7) {$P12/_1/c1$\\\fbox{$(\text{Na-crown})_2\ce{ReCl6}$}};
\draw[->] (A1.south) -- (A2.north) node[midway, fill=white]
{t3\\$\vec{a},\vec{a}+2\vec{b},\vec{c}$};
\draw[->] (A2.south) -- (A3.north) node[midway, fill=white]
{t2};
\draw[->] (A3.south) -- (A4.north) node[midway, fill=white]
{k2\\$\frac{1}{4},-\frac{1}{4},0$};
\end{scope}
% RIGHT: Wyckoff tables, Wyckoff relations, coordinate transformations
\begin{scope}[
xshift=2.5cm,
every matrix/.style={
matrix of nodes,
nodes in empty cells,
inner xsep=0pt,
inner ysep=1pt,
row sep =-\pgflinewidth,
column sep = -\pgflinewidth,
nodes={anchor=center,text height=2ex,text depth=0.25ex},
},
]
% Matrix 1
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
] (M1) at (0,0)
{ Re: 2d\\
$\bar{6}m2$\\
\zd\\
\ed\\
\ev\\
};
% Matrix 1 borders
\draw (M1.south west) rectangle (M1.north east);
\draw (M1-2-1.south -| M1.west) -- (M1-2-1.south -| M1.east);
% Matrix 2
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
] (M2) at (0,-4.5)
{ 4c\\
$m2m$\\
\eh\\
0.167\\
\ev\\
};
% Matrix 2 borders
\draw (M2.south west) rectangle (M2.north east);
\draw (M2-2-1.south -| M2.west) -- (M2-2-1.south -| M2.east);
% Matrix 3
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
] (M3) at (0,-7.8)
{ 4e\\
$2$\\
\eh\\
0.167\\
\ev\\
};
% Matrix 3 borders
\draw (M3.south west) rectangle (M3.north east);
\draw (M3-2-1.south -| M3.west) -- (M3-2-1.south -| M3.east);
% Matrix 4
\matrix[
column 1/.style = {nodes={minimum width=1.1cm}},
column 2/.style = {nodes={minimum width=1.1cm}},
] (M4) at (0.55,-10.7)
{ Re: 4e & obser-\\
$1$ & ved\\
0.25 & 0.244\\
0.417 & 0.415\\
0.25 & 0.219\\
};
% Matrix 4 borders
\draw (M4.south west) rectangle (M4.north east);
\draw (M4-2-1.south -| M4.west) -- (M4-2-1.south -| M4.east);
\draw (M4-1-1.north east |- M4.north) -- (M4-5-1.south east |- M4.south);
% Wyckoff changes
\draw[->,shorten >=2mm] (M1-5-1.south) ++ (0,-.2) -- (M2-1-1.north);
\draw[->,shorten >=2mm] (M2-5-1.south) ++ (0,-.2) -- (M3-1-1.north);
\draw[->,shorten >=2mm] (M3-5-1.south) ++ (0,-.2) -- (M4-1-1.north);
% Coordinate transformations
\path (M1.south) -- (M2.north) node[midway,fill=white]
{$x-\frac{1}{2}y,\frac{1}{2}y,z$};
\end{scope}
\end{tikzpicture}
\end{document}

gupackage? – naphaneal May 29 '18 at 18:54gupackage. it does not offer the functionality of creating images like you've shown in your example figures, AFAICS. it does however allow you to create the diagrams (check the examples ingudoc.pdf). I reckon, in combination withtikz, you should achieve your goal. – naphaneal May 30 '18 at 19:31