I can't really recommend this approach except for small documents, because it is labor intensive. It requires you to
change syntax from \left...\right to \scaleleftright[]{}{}{}
customize the max-width (optional argument) parameter for each particular case
employ the \big...\Bigg approach to get the best appearance
It requires the occasional use of \vphantoms to get vertical symmetry about the math axis.
The method uses the optional argument of \scaleleftright to horizontally compress the glyphs to be no larger than the specified max-width.
The proper solution is to find a font that best suits, or else manually import just a new set of delimiters into the font.
The MWE:
\documentclass{article}
\usepackage{kpfonts,scalerel}
\begin{document}
\[
(A)\left(A_j\right)\left(\frac{B}{C}\right)
\left(\frac{\frac{D_a^2}{D_b}}{\frac{E_x}{E_y}}\right)
\quad
[A]\left[A_j\right]\left[\frac{B}{C}\right]
\left[\frac{\frac{D_a^2}{D_b}}{\frac{E_x}{E_y}}\right]
\]
\[
(A)\,\scaleleftright[3.1pt]{\bigl(}{A_j^{\vphantom{f}}}{\bigr)}\,
\scaleleftright[2.8pt]{\biggl(}{\frac{B}{C}}{\biggr)}\,
\scaleleftright[3.1pt]{\Biggl(}{\frac{\frac{D_a^2}{D_b}}{\frac{E_x}{E_y}}}{\Biggr)}
\quad
[A]\,\scaleleftright[2.5pt]{\bigl[}{A_j^{\vphantom{f}}}{\bigr]}\,
\scaleleftright[2.8pt]{\biggl[}{\frac{B}{C}}{\biggr]}\,
\scaleleftright[3.1pt]{\Biggl[}{\frac{\frac{D_a^2}{D_b}}{\frac{E_x}{E_y}}}{\biggr]}
\]
\end{document}

Alternate syntax of \xleft[]{}...\xright[]{}
\documentclass{article}
\usepackage{kpfonts,scalerel}
\newcommand\xleft[2][99pt]{\mathopen{\scalerel*[#1]{#2}{#2}}}
\newcommand\xright[2][99pt]{\mathclose{\scalerel*[#1]{#2}{#2}}}
\begin{document}
\[
(A)\left(A_j\right)\left(\frac{B}{C}\right)
\quad
[A]\left[A_j\right]\left[\frac{B}{C}\right]
\]
\[
(A)\,\xleft[3.1pt]{\bigl(}A_j\xright[3.1pt]{\bigr)}\,
\xleft[2.8pt]{\Bigl(}\frac{B}{C}\xright[2.8pt]{\Bigr)}\,
\quad
[A]\,\xleft[2.4pt]{\bigl[}A_j\xright[2.4pt]{\bigr]}\,
\xleft[2.8pt]{\Bigl[}\frac{B}{C}\xright[2.8pt]{\Bigr]}\,
\]
\end{document}

x_jfor example). – David Carlisle Jun 13 '18 at 11:47