1

Here is my latex code:

\begin{document}
\begin{align*} 
f_{Y_2}(y_2) &= \int_{\frac{1-\sqrt{2(-1+3y_2)}}{3}}^{1}\frac{1}{4\sqrt{R}} \mathrm{d}y_1 + \int_{0}^{1-\sqrt{-1+2y_2}}\frac{1}{4\sqrt{R}} \mathrm{d}y_1 \\
f_{Y_2}(y_2) &= \frac{1}{2\sqrt{3}} \left[\arcsin \left(\frac{1}{\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right) - \arcsin \left(  \frac{-\sqrt{2(-1+3y_2)}}{2\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right) + \arcsin \left(\frac{1-\frac{3}{2}\sqrt{-1+2y_2}}{\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} -  \arcsin \left(\frac{-1}{2\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right) \right]
\end{align*}
  • 1
    You have an unclosed \left. –  Apr 24 '19 at 15:21
  • 1
    ... meaning that an \right) seems to be missing before the last \arcsin.... –  Apr 24 '19 at 15:23
  • If you add to \int also \limits you certainly will have more space when you write the integranda function. See this example \documentclass[a4paper,12pt]{article} \usepackage{mathtools} \begin{document} \[\int\limits_{\frac{1-\sqrt{2(-1+3y_2)}}{3}}^{1}\!\!\frac{1}{4\sqrt{R}}\] \end{document} – Sebastiano Apr 24 '19 at 18:35

1 Answers1

1

Add a \right solves the problem. However, your equation is too wide, you need to break it, so you have to resize brackets manually instead of using \left and \right.

\documentclass{article}
\usepackage{amsmath}
\makeatletter % https://tex.stackexchange.com/a/6796/156344
\newcommand{\vast}{\bBigg@{3.5}}
\makeatother
\begin{document}
\begin{align*} 
f_{Y_2}(y_2) &= \int_{\frac{1-\sqrt{2(-1+3y_2)}}{3}}^{1}\frac{1}{4\sqrt{R}} \mathrm{d}y_1 + \int_{0}^{1-\sqrt{-1+2y_2}}\frac{1}{4\sqrt{R}} \mathrm{d}y_1 \\
f_{Y_2}(y_2) &= \frac{1}{2\sqrt{3}} \vast[\arcsin \left(\frac{1}{\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right) - \arcsin \left(  \frac{-\sqrt{2(-1+3y_2)}}{2\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right)\\
&\hphantom{={}}+ \arcsin \vast(\frac{1-\frac{3}{2}\sqrt{-1+2y_2}}{\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} -  \arcsin \left(\frac{-1}{2\sqrt{\frac{1}{4} + \frac{3}{2}(y_2-\frac{1}{2})}} \right) \vast)\vast]
\end{align*}
\end{document}

enter image description here