Here are two solutions. In the first I combined a polygonal clip with an elliptical fill. In the second I computed the arc angles corresponding to the given points (actually, the intersection between them and the middle ellipse).
\documentclass[multi=tikzpicture]{standalone}% or just [tikz]
\usepackage{tikz}
\usetikzlibrary{shapes, calc, fit, arrows.meta, arrows, patterns,
positioning, intersections, 3d, matrix}
\usetikzlibrary{decorations.pathmorphing, decorations.shapes}
\begin{document}
\begin{tikzpicture}
\begin{scope}
\clip (0,1) -- (0,3) -- (3,2) -- (1.36,0.75) -- cycle;
\fill[pink, even odd rule] (0,0) ellipse (3 and 2) ellipse (2 and 1);
\end{scope}
\draw (0,0) ellipse (2 and 1);
\draw (0,0) ellipse (3 and 2);
\draw (0,0) ellipse (4 and 3);
\draw (0,1) -- (0,3);
\draw (0,-1) -- (0,-3);
\draw (2,0) -- (4,0);
\draw (-2,0) -- (-4,0);
\draw (1.36,0.75) -- (3.0,2);
\draw (-1.36,0.75) -- (-3.0,2);
\draw (1.36,-0.75) -- (3.0,-2);
\draw (-1.36,-0.75) -- (-3.0,-2);
\node at (1,1.4){Here};
\end{tikzpicture}
\begin{tikzpicture}
\pgfmathsetmacro{\inner}{atan2(0.75,1.36/2)}%
\path[name path=A] (0,0) ellipse (3 and 2);
\path[name path=B] (1.36,0.75) -- (3.0,2);
\path[name intersections={of=A and B, by=C}] (C);
\pgfgetlastxy{\Cx}{\Cy}
\pgfmathsetmacro{\outer}{atan2(\Cy/2,\Cx/3)}%
\fill[pink] (0,1) -- (0,2) arc[x radius=3, y radius=2, start angle=90, end angle={\outer}]
-- (1.36,0.75) arc[x radius=2, y radius=1, start angle={\inner}, end angle=90] -- cycle;
\draw (0,0) ellipse (2 and 1);
\draw (0,0) ellipse (3 and 2);
\draw (0,0) ellipse (4 and 3);
\draw (0,1) -- (0,3);
\draw (0,-1) -- (0,-3);
\draw (2,0) -- (4,0);
\draw (-2,0) -- (-4,0);
\draw (1.36,0.75) -- (3.0,2);
\draw (-1.36,0.75) -- (-3.0,2);
\draw (1.36,-0.75) -- (3.0,-2);
\draw (-1.36,-0.75) -- (-3.0,-2);
\node at (1,1.4){Here};
\end{tikzpicture}
\end{document}