Thanks to this (by @user2478) and this (by @user121799) great answers, I'm trying to draw a sketch as a combination of both.
The point is that the former and the later are in PSTricks and TikZ, respectively. So, I maybe should have converted one of them to another, so that the combination would be more straightforward. But, unfortunately I can't make such conversions out. That being said, I have a pspicture and a tikzpicture, and I need to shift the objects of the tikzpicture in such a way that they get into the area of the pspicture's entity. In particular, here is what have done so far.
\documentclass{article}
\usepackage{tikz}
\usepackage{pst-solides3d}
\usepackage{tikz-3dplot}
\usetikzlibrary{shapes,3d}
\begin{document}
\psset{viewpoint=10 70 15 rtp2xyz,Decran=10}
\begin{pspicture}[solidmemory](-5,-5)(6,1)
\psSolid[object=parallelepiped,a=6,b=3,c=3,RotZ=30,name=Cube,action=draw](0 0 2)
\multido{\iA=0+1}{8}{%
\psSolid[object=point,definition=solidgetsommet,args=Cube \iA]}
\psdots*[dotstyle=diamond, fillcolor=red, linecolor = red](0,2)(1,1)(0.5,0.5)(-1,1)(-2,2)(-1.5,3)(1.5,3.5)
\end{pspicture}
\psset{viewpoint=10 60 15 rtp2xyz,Decran=10}
\begin{pspicture}[solidmemory](-7.5,-5)(6,1)
\psSolid[object=parallelepiped,a=10,b=2,c=2.2,RotZ=30,name=Cube,action=draw](0 0 2)
\multido{\iA=0+1}{8}{%
\psSolid[object=point,definition=solidgetsommet,args=Cube \iA]}
\psdots*[dotstyle=diamond, fillcolor = red, linecolor = red](-2.3,2)(-1.3,1)(-1.8,0.5)(-3,1)(-4.3,2)(-3.8,3)(-0.8,3)
\psdots*[dotstyle=square, fillcolor = blue, linecolor = blue](-0.3,1)(-0.1,1.5)(0.3,2)(0.2,3)(1.5,2)(1,2.7)(0.6,1)(0.8,1.4)(1.7,2.4)(2.3,2.7)(2,1.7)
\end{pspicture}
\tdplotsetmaincoords{100}{300}
\begin{tikzpicture}[tdplot_main_coords,scale=1.1,
hexa/.style= {shape=regular polygon,regular polygon
sides=6,minimum size=1cm, draw,inner sep=0,anchor=south,rotate=30},
hexlattice/.pic={
\node[hexa] (h1;1) at ({(1-(1+pow(-1,1))*1/4)*sin(60)},{1*0.75}) {};
\node[hexa] (h1;2) at ({(1-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h1;3) at ({(1-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h2;1) at ({(2-(1+pow(-1,1))*1/4)*sin(60)},{1*0.75}) {};
\node[hexa] (h2;2) at ({(2-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h2;3) at ({(2-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h3;2) at ({(3-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
},
hexlattice2/.pic={
\node[hexa] (h0;3) at ({(0-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h1;1) at ({(1-(1+pow(-1,1))*1/4)*sin(60)},{1*0.75}) {};
\node[hexa] (h1;2) at ({(1-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h1;3) at ({(1-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h1;4) at ({(1-(1+pow(-1,4))*1/4)*sin(60)},{4*0.75}) {};
\node[hexa] (h1;5) at ({(1-(1+pow(-1,5))*1/4)*sin(60)},{5*0.75}) {};
\node[hexa] (h2;1) at ({(2-(1+pow(-1,1))*1/4)*sin(60)},{1*0.75}) {};
\node[hexa] (h2;2) at ({(2-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h2;3) at ({(2-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h2;4) at ({(2-(1+pow(-1,4))*1/4)*sin(60)},{4*0.75}) {};
\node[hexa] (h2;5) at ({(2-(1+pow(-1,5))*1/4)*sin(60)},{5*0.75}) {};
\node[hexa] (h3;1) at ({(3-(1+pow(-1,1))*1/4)*sin(60)},{1*0.75}) {};
\node[hexa] (h3;2) at ({(3-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h3;3) at ({(3-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h3;4) at ({(3-(1+pow(-1,4))*1/4)*sin(60)},{4*0.75}) {};
\node[hexa] (h3;5) at ({(3-(1+pow(-1,5))*1/4)*sin(60)},{5*0.75}) {};
\node[hexa] (h4;2) at ({(4-(1+pow(-1,2))*1/4)*sin(60)},{2*0.75}) {};
\node[hexa] (h4;3) at ({(4-(1+pow(-1,3))*1/4)*sin(60)},{3*0.75}) {};
\node[hexa] (h4;4) at ({(4-(1+pow(-1,4))*1/4)*sin(60)},{4*0.75}) {};
}]
\begin{scope}[canvas is xz plane at y=0,transform shape]
\pic[scale=1.1] at (5,0) {hexlattice};
\end{scope}
\begin{scope}[canvas is xz plane at y=0,transform shape]
\pic[scale=0.6] at (0,0) {hexlattice2};
\end{scope}
\end{tikzpicture}
\end{document}
I need to shift each of the small honeycombs up right in front of their corresponding cubes as below.
But there more I wrestle with the numerical values of those scopes, the less I get closer to what I want!
What is the best workaround to realize such kind of shifts?


