I am trying to type this extremely long equation without success. I got this result out of Mathematica and copied it. For some reason, the parentheses are not changing their shape according to the fraction's height.
I tried using an automatic line brake with \usepackage{breqn} and \begin{dmath} without success.
-\frac{2 u_g \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos ^2\left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}-\frac{4 \pi \tau_y \cosh ^2\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos ^2\left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 h \pi u_g \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 \pi \tau_y \cosh \left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{2 \pi \tau_y \cos \left(\frac{\pi (h+z)}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)}-\frac{2 u_g \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)}-\frac{2 \pi \tau_y \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi (h+z)}{D}\right) \sin \left(\frac{\pi (h+z)}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right)}+\frac{2 u_g \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{\pi z}{D}\right) \sin ^2\left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}-\frac{2 u_g \cosh ^2\left(\frac{h \pi }{D}\right) \sin \left(\frac{\pi z}{D}\right) \sinh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{\pi z}{D}\right) \cos \left(\frac{h \pi }{D}\right)}{\left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+\frac{4 \pi \tau_y \cos \left(\frac{\pi z}{D}\right) \cosh \left(\frac{h \pi }{D}\right) \cosh \left(\frac{\pi z}{D}\right) \sin \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right) \cos \left(\frac{h \pi }{D}\right)}{D f \rho_0 \left(\cos \left(\frac{2 h \pi }{D}\right)+\cosh \left(\frac{2 h \pi }{D}\right)\right) \left(\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)\right) \left(\frac{\cosh \left(\frac{h \pi }{D}\right) \sinh \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}-\frac{\cos \left(\frac{h \pi }{D}\right) \sin \left(\frac{h \pi }{D}\right)}{\cos ^2\left(\frac{h \pi }{D}\right) \cosh ^2\left(\frac{h \pi }{D}\right)+\sin ^2\left(\frac{h \pi }{D}\right) \sinh ^2\left(\frac{h \pi }{D}\right)}\right)}+u_g
Any suggestions?




h\pi/Dand\pi z/Dand for other recurring combinations; factorize long denominators. I fear that no splitting will make this equation readable. – campa May 22 '20 at 16:17