1

Question: In my document i want to give effect of animation in systematic order. Is it possible?

Thanks in advance

what i done so far

\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{parskip}
\usepackage[left=1.30cm, right=1.30cm, top=1.30cm, bottom=1.30cm]{geometry}
\begin{document}
\large
\textbf{Example: Obtain first order derivative of the function} $\boldsymbol{\dfrac{x^2+1}{x^2-1}}$ 

\begin{align*}
\dfrac{d}{dx} \left[\dfrac{x^2+1}{x^2-1}\right]&=\dfrac{(x^2-1)\cdot \dfrac{d}{dx} \left\{x^2+1\right\} - (x^2+1)\cdot \dfrac{d}{dx} \left\{x^2-1\right\}}{(x^2-1)^2}&\\[16pt]
&=\dfrac{(x^2-1)\cdot\left\{2x+0\right\}-(x^2+1)\cdot\left\{2x-0\right\}}{(x^2-1)^2}&\\[16pt]
&=\dfrac{(x^2-1)\cdot\left\{2x\right\}-(x^2+1)\cdot\left\{2x\right\}}{(x^2-1)^2}&\\[16pt]
&=\dfrac{2x\left[(x^2-1)-(x^2+1)\right]}{(x^2-1)^2}&\\[16pt]
&=\dfrac{2x\left[x^2-1-x^2-1\right]}{(x^2-1)^2}&\\[16pt]
&=\dfrac{2x\left(-2\right)}{(x^2-1)^2}&\\[16pt]
&=\dfrac{-4x}{(x^2-1)^2}&\\[16pt]
\end{align*}
\end{document}
SandyM
  • 2,757
  • 1
    What do you meant by "animation in systematic order"? –  Jun 03 '20 at 08:26
  • I mean that each steps display one after another just like in presentation – SandyM Jun 03 '20 at 09:16
  • 1
    In presentation, it is actually two pages for two object makes it look like animation. So you can do it by hand. –  Jun 03 '20 at 10:37
  • Just to remind, what animation was and still is: https://www.awn.com/animationworld/disney-artists-share-their-stories-and-creative-secrets-sketchbook … changes frame by frame.. – MS-SPO Oct 17 '23 at 07:42

1 Answers1

0

This is a nice answer but it doesn't work inside multi-line math formulas. here is my trick that is a bit awkward:

\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{parskip}
\usepackage[left=1.30cm, right=1.30cm, top=1.30cm, bottom=1.30cm]{geometry}

\begin{document} \large \textbf{Example: Obtain first order derivative of the function} $\boldsymbol{\dfrac{x^2+1}{x^2-1}}$

\begin{align} \dfrac{d}{dx} \left[\dfrac{x^2+1}{x^2-1}\right]&=\dfrac{(x^2-1)\cdot \dfrac{d}{dx} \left{x^2+1\right} - (x^2+1)\cdot \dfrac{d}{dx} \left{x^2-1\right}}{(x^2-1)^2}\[16pt] \end{align}\newpage

\large \textbf{Example: Obtain first order derivative of the function} $\boldsymbol{\dfrac{x^2+1}{x^2-1}}$

\begin{align} \dfrac{d}{dx} \left[\dfrac{x^2+1}{x^2-1}\right]&=\dfrac{(x^2-1)\cdot \dfrac{d}{dx} \left{x^2+1\right} - (x^2+1)\cdot \dfrac{d}{dx} \left{x^2-1\right}}{(x^2-1)^2}\[16pt] &=\dfrac{(x^2-1)\cdot\left{2x+0\right}-(x^2+1)\cdot\left{2x-0\right}}{(x^2-1)^2}\[16pt] \end{align} \end{document}

enter image description here

AlexG
  • 54,894