am trying to group the equations then give them 1 number as group
\begin{align*}
& \sigma_w^2(t)=q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t)\\
& \text{where} \\
& q_1(t)=\sum_{i=1}^{t}P(i) \:\& \: q_1(t)=\sum_{i=t+1}^{I}P(i)
\\
& mu_1(t)= \sum_{i=1}^{t}\frac{iP(i)}{q_1(t)} \: \& \: \mu_2(t)= \sum_{i=t+1}^{I}\frac{iP(i)}{q_2(t)}
\\
& \sigma_1^2(t)=\sum_{i=1}^{t}[i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \: \& \: \sum_{i=t+1}^{I}[i-\mu_1(t)]^2 \frac{P(i)}{q_2(t)}\\
\label{EqOtsu}
\end{align*}


