0

am trying to group the equations then give them 1 number as group

  \begin{align*}
     &  \sigma_w^2(t)=q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t)\\
         & \text{where} \\
      & q_1(t)=\sum_{i=1}^{t}P(i)  \:\& \: q_1(t)=\sum_{i=t+1}^{I}P(i)
    \\
     & mu_1(t)= \sum_{i=1}^{t}\frac{iP(i)}{q_1(t)} \: \& \: \mu_2(t)= \sum_{i=t+1}^{I}\frac{iP(i)}{q_2(t)}
    \\
     & \sigma_1^2(t)=\sum_{i=1}^{t}[i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \: \& \: \sum_{i=t+1}^{I}[i-\mu_1(t)]^2 \frac{P(i)}{q_2(t)}\\
    \label{EqOtsu}
    \end{align*}

enter image description here

Guido
  • 30,740
memi
  • 1

2 Answers2

1

Your readers would have a hard time in understanding what the unique number refers to; I suggest using subequations.

\documentclass{article}
\usepackage{amsmath}

\begin{document}

\begin{subequations}\label{EqOtsu} \begin{equation} \sigma_w^2(t)=q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t) \tag{\ref{EqOtsu}} \end{equation} where \begin{gather} q_1(t)=\sum_{i=1}^{t}P(i) \quad&\quad q_1(t)=\sum_{i=t+1}^{I}P(i) \ \mu_1(t)=\sum_{i=1}^{t}\frac{iP(i)}{q_1(t)} \quad&\quad \mu_2(t)= \sum_{i=t+1}^{I}\frac{iP(i)}{q_2(t)} \ \sigma_1^2(t)=\sum_{i=1}^{t}[i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \quad&\quad \sigma_2^2(t)=\sum_{i=t+1}^{I}[i-\mu_1(t)]^2 \frac{P(i)}{q_2(t)} \end{gather} \end{subequations}

\end{document}

enter image description here

egreg
  • 1,121,712
0

You can use the aligned enivoment instead of align. aligned can be used inside an equation.

Thus the multi line expression can be obtained with:

\begin{equation}
  \begin{aligned}
     &  \sigma_w^2(t)=q_1(t)\sigma_1^2(t)+q_2(t)\sigma_2^2(t)\\
         & \text{where} \\
      & q_1(t)=\sum_{i=1}^{t}P(i)  \:\& \: q_1(t)=\sum_{i=t+1}^{I}P(i)
    \\
     & mu_1(t)= \sum_{i=1}^{t}\frac{iP(i)}{q_1(t)} \: \& \: \mu_2(t)= \sum_{i=t+1}^{I}\frac{iP(i)}{q_2(t)}
    \\
     & \sigma_1^2(t)=\sum_{i=1}^{t}[i-\mu_1(t)]^2 \frac{P(i)}{q_1(t)} \: \& \: \sum_{i=t+1}^{I}[i-\mu_1(t)]^2 \frac{P(i)}{q_2(t)}\\
    \label{EqOtsu}
 \end{aligned}
\end{equation}  

enter image description here

Guido
  • 30,740