In this code
\PassOptionsToPackage{svgnames, x11names}{xcolor}
\documentclass{book}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[italian]{babel}
\usepackage[utf8]{inputenc}
\usepackage[a4paper,top=3cm,bottom=3cm,left=1.5cm,right=1.5cm]{geometry}
\usepackage{xparse}
\usepackage[svgnames,x11names]{xcolor}
\usepackage{relsize}
\usepackage{tikz-cd}
\usepackage{amscd}
\usepackage{extarrows}
\usepackage{mdwlist,enumitem}
%\usepackage{MnSymbol}
\usepackage[all,cmtip]{xy}
\usepackage{stackrel}
\usepackage{color}
%\usepackage{amsmath,pict2e}
%\usepackage{amssymb}
\usepackage{stix}
\usepackage{mathtools}
\usepackage{graphicx}
\usepackage{amsthm}
%\usepackage{amsfonts}
%\usepackage{mathrsfs}
\usepackage{latexsym}
\usepackage{footmisc}
\usepackage{imakeidx}
\usepackage[tight, italian]{minitoc}
\usepackage{pstricks-add}
\usepackage{pst-plot}
\usepackage{pst-func}
\usepackage{caption}
\usepackage{ifsym}
\usepackage{stmaryrd}
%\usepackage{mathabx}
%\usepackage{yhmath}
%\usepackage{dsfont}
\usepackage{xfrac}
\usepackage{musixtex}
\usepackage{multicol}
\usepackage{multirow}
\usepackage[bb=ams]{mathalpha}
%\usepackage{bbold}
\usepackage[outline]{contour}
\usepackage[makeroom]{cancel}
\usepackage{centernot}
\usepackage[most]{tcolorbox}
\usepackage[customcolors,shade]{hf-tikz}
\usepackage{nicematrix}
\usepackage{witharrows}
\usepackage{cascade}
\tcbuselibrary{breakable,theorems,skins}
\usepackage{varwidth}
\captionsetup{labelformat=empty,textfont=sl}
\usetikzlibrary{shapes.misc, shapes.geometric}
\usepackage{unravel}
\usepackage[colorlinks=true]{hyperref}
\hypersetup{pdfstartview=FitH}
\usepackage{cleveref}
\usepackage{booktabs}
\title{Chiave di Basso prova}
\author{PUCK}
\date{\today}
\begin{document}
\maketitle
\section{Introduction}
Let $\raisebox{2.5mm}{\smallbassclef}\coloneqq\biggl{\raisebox{2.5mm}{\smallbassclef},\le\biggr}$ a Partial Ordered Set.
\section{Elementi di Teoria degli Insiemi}
\newtheorem{DeMorganCupCap}{Teorema di Augustus De Morgan}[subsection]
\begin{DeMorganCupCap}
Dato un insieme $X$ e due suoi sottoinsiemi, siano essi $A$ e $B$, allora valgono le seguenti due tesi:
\begin{enumerate}
\item $X\setminus(A \cup B)=(X\setminus A) \cap(X\setminus B)=\complement (A)\cap\complement(B)$;
\item $X\setminus\left(A\cap B\right)=\left(X\setminus A\right)\cup\left( X \setminus B\right)=\complement\left(A\right)\cup\complement\left(B\right)$.
\end{enumerate}
Un altro modo elegante di enunciare le Leggi di De Morgan è questo:
\begin{enumerate}
\item $\complement(A\cup B)=\complement(A)\cap\complement(B)$;
\item $\complement(A\cap B)=\complement(A)\cup\complement(B)$.
\end{enumerate}
\begin{proof}
Sia $x$ un generico elemento di $X$, allora si ha che
\begin{equation}
\begin{split}
x\in X\setminus(A\cup B)&\iff x\in X\wedge x\notin A\cup B\& \iff x\notin A\wedge x\notin B\ &\iff x\in X\setminus A=\complement (A)\wedge x\in X\setminus B= \complement(B)\ &\iff x\in \complement (A) \cap \complement(B)
\end{split}
\end{equation}
\begin{equation}
\begin{split}
x\in X\setminus(A\cap B)&\iff x\in X\wedge x\notin A\cap B\& \iff x\notin A\vee x\notin B\ &\iff x\in X\setminus A=\complement (A)\vee x\in X\setminus B= \complement(B)\ &\iff x\in \complement (A) \cup \complement(B)
\end{split}
\end{equation}
La dimostrazione è conclusa.
\end{proof}
\end{DeMorganCupCap}
\end{document}
the output is wrong
Overleaf tells me this:
How could I solv? Thank you so much
(Perhaps the order of packages is not correct, and almost of course some package is inuseful)

