0

The following table needs to fit into the page width and some parts of it should be put onto the next page:

...
\begin{tabular}[htb]{|c|l|l|}
    \hline 
    Parameter & Definition & Value \\
    \hline
    R & Gas Constant & $8.3143 \frac{J}{Kmol}$ \\
    T & Temperature & $310K$ \\
    F & Faraday constant & $96.4867 \frac{C}{mmol}$ \\
    $C_m$ & Cell capacitance per unit surface area & $0.185 \frac{\mu F}{cm^2}$ \\
    $K_O $ & Extracellular $K^+$ concentration & $5.4 mM$ \\
    $Ca_O$ & Extracellular $Ca^{+2}$ concentration & $2.0 mM$ \\
    $Na_O$ & Extracellular $Na^{+2}$ concentration& $140.0 mM $ \\
    $V_C$ & Cytoplasmic volume & $0.016404 \mu m^3$ \\
    $V_SR$ & Sarcoplasmic reticulum volume & $0.001094 \mu m^3$ \\
    $V_SS$ & Subspace volume & $0.00005468 m^3$ \\
    $Buf_c$ & Total cytoplasmic buffer concentration & $0.2mM$ \\
    $K_{Bufc}$ & $Ca_i$ half-saturation constant for cytoplasmic buffer & $0.001mM$ \\
    $Buf_{sr}$ & Total sarcoplasmic buffer concentration & $10.0 mM$ \\
    $K_{bufsr}$ & $Ca_{SR}$ half-saturation constant for sarcoplasmic buffer & $0.3mM$ \\
    $Buf_{ss}$ & Total subspace buffer concentration & $0.4 mM$ \\
    $K_{bufss}$ & $Ca_{SS}$ half-saturation constant for subspace buffer & $0.00025 mM$ \\
    $V_{maxup}$ & Maximal $I_{up}$ & $0.006375 mM$ \\
    $K_{up}$ & Half-saturation constant of $I_{up}$ & $0.00025 mM$ \\
    $V_{rel}$ & Maximal $I_{rel}$ conductance & $0.102 \frac{mM}{ms}$ \\
    $K_1$ & R to O and RI to I $I_{rel}$ transition rate & $0.15 \frac{mM}{ms}$ \\
    $K_2$ & O to I and R to RI $I_{rel}$l transition rate & $0.045\frac{mM}{ms}$ \\
    $K_3$ & O to R and I to RI $I_{rel}$ transition rate & $0.060 \frac{mM}{ms}$ \\
    $K_4$ & I to O and RI to I $I_{rel}$ transition rate & $0.005 \frac{mM}{ms}$ \\
    $G_{CaSR}$ & CaSR half-saturation constant of $K_{CaSR}$ & $1.5 mM$ \\
    $Max_{SR}$ & Maximum value of $K_{CaSR}$ & $2.5$ \\
    $Min_{SR}$ & Minimum value of $K_{CaSR}$ & $1$ \\
    $V_{leak}$ & Maximal $I_{leak}$ conductance & $0.00036 \frac{mM}{ms}$ \\
    $V_{xfer}$ & Maximal $I_{xfer}$ conductance & $0.0038 \frac{mM}{ms}$ \\
    $G_{kr}$ & Maximal $I_{Kr}$ conductance & $0.172\frac{nS}{pF}$ \\
    $G_{ks}$ & Maximal epicardial $I_{Ks}$ conductance & $0.441\frac{nS}{pF}$ \\
    $G_{pCa}$ & Maximal $I_{pCa}$ conductance & $0.8666\frac{nS}{pF}$ \\
    $G_{pK}$ & Maximal $I_{pK}$ conductance & $0.00219\frac{nS}{pF}$ \\
    $p_{KNa}$ & Relative $I_{Ks}$ permeability to Na & $0.03$ \\
    $G_{K1}$ & Maximal $I_{K1}$ conductance & $5.405\frac{nS}{pF}$ \\
    $G_{to}$ & Epicardial $I_{to}$ conductance & $0.294\frac{nS}{pF}$ \\
    $G_{Na}$ & Maximal $I_{Na}$ conductance & $14.838\frac{nS}{pF}$ \\
    $G_{bNa}$ & Maximal $I_{bNa}$ conductance & $0.00029\frac{nS}{pF}$ \\
    $K_{mK}$ & $K_o$ half-saturation constant of $I_{NaK}$ & $1.0 mM$ \\
    $K_{mNa}$ & $Na_i$ half-saturation constant of $I_{NaK}$ & $40.0 mM$ \\
    $K_{NaK}$ & Maximal $I_{NaK} (P_{naK}) & $2.724mM$ \\
    $G_{CaL}$ & Maximal $I_{CaL}$ conductance & $0.00003980\frac{nS}{pF}$ \\
    $G_{bCa}$ & Maximal $I_{pCa}$ conductance & $0.000592\frac{nS}{pF}$ \\
    $k_{NaCa}$ & Maximal $I_{NaCa}$ & $1000$ \\
    $K_{mNai}$ & $Na_i$ half-saturation constant for $NaCa$ & $87.5mM$ \\
    $K_{mCa}$ & $Ca_i$ half-saturation constant for $I_{NaCa} & $1.38mM$ \\
    $K_{mCa}$ & Saturation factor for $I_{NaCa}$ & $0.1mM$ \\
    $n$ & Voltage dependence parameter of $I_{NaCa}$ & $0.35$ \\
    $K_{pCa}$ & Half-saturation constant of $I_{pCa}$ & $0.0005mM$ \\
    \hline
\end{tabular}
...

Table that needs to be fit and some parts put into the next page.

TiMauzi
  • 841
rncll
  • 11

2 Answers2

1

I think this can be a solution with package ltablex can be of great use. (Combining longtable and tabularx) Here the column specifier X is used to enable auto linewrap. Please consider the following MWE:

\documentclass[a5paper]{article}
\usepackage[]{geometry}
\usepackage{ltablex}
\usepackage{helvet}
\renewcommand{\familydefault}{\sfdefault}
\usepackage{sansmath} % Enables turning on sans-serif math mode, and using other environments
\sansmath % Enable sans-serif math for rest of document

\usepackage{booktabs} % for better table control

\begin{document}

\begin{tabularx}{\linewidth}{cXl}
  \toprule
  \textbf{Parameter} & \textbf{Definition} & \textbf{Value} \\
  \midrule
  \endhead
  \bottomrule
  \endfoot

R & Gas Constant & $8.3143 \frac{J}{Kmol}$ \ T & Temperature & $310K$ \ F & Faraday constant & $96.4867 \frac{C}{mmol}$ \ $C_m$ & Cell capacitance per unit surface area & $0.185 \frac{\mu F}{cm^2}$ \ $K_O $ & Extracellular $K^+$ concentration & $5.4 mM$ \ $Ca_O$ & Extracellular $Ca^{+2}$ concentration & $2.0 mM$ \ $Na_O$ & Extracellular $Na^{+2}$ concentration& $140.0 mM $ \ $V_C$ & Cytoplasmic volume & $0.016404 \mu m^3$ \ $V_SR$ & Sarcoplasmic reticulum volume & $0.001094 \mu m^3$ \ $V_SS$ & Subspace volume & $0.00005468 m^3$ \ $Buf_c$ & Total cytoplasmic buffer concentration & $0.2mM$ \ $K_{Bufc}$ & $Ca_i$ half-saturation constant for cytoplasmic buffer & $0.001mM$ \ $Buf_{sr}$ & Total sarcoplasmic buffer concentration & $10.0 mM$ \ $K_{bufsr}$ & $Ca_{SR}$ half-saturation constant for sarcoplasmic buffer & $0.3mM$ \ $Buf_{ss}$ & Total subspace buffer concentration & $0.4 mM$ \ $K_{bufss}$ & $Ca_{SS}$ half-saturation constant for subspace buffer & $0.00025 mM$ \ $V_{maxup}$ & Maximal $I_{up}$ & $0.006375 mM$ \ $K_{up}$ & Half-saturation constant of $I_{up}$ & $0.00025 mM$ \ $V_{rel}$ & Maximal $I_{rel}$ conductance & $0.102 \frac{mM}{ms}$ \ $K_1$ & R to O and RI to I $I_{rel}$ transition rate & $0.15 \frac{mM}{ms}$ \ $K_2$ & O to I and R to RI $I_{rel}$l transition rate & $0.045\frac{mM}{ms}$ \ $K_3$ & O to R and I to RI $I_{rel}$ transition rate & $0.060 \frac{mM}{ms}$ \ $K_4$ & I to O and RI to I $I_{rel}$ transition rate & $0.005 \frac{mM}{ms}$ \ $G_{CaSR}$ & CaSR half-saturation constant of $K_{CaSR}$ & $1.5 mM$ \ $Max_{SR}$ & Maximum value of $K_{CaSR}$ & $2.5$ \ $Min_{SR}$ & Minimum value of $K_{CaSR}$ & $1$ \ $V_{leak}$ & Maximal $I_{leak}$ conductance & $0.00036 \frac{mM}{ms}$ \ $V_{xfer}$ & Maximal $I_{xfer}$ conductance & $0.0038 \frac{mM}{ms}$ \ $G_{kr}$ & Maximal $I_{Kr}$ conductance & $0.172\frac{nS}{pF}$ \ $G_{ks}$ & Maximal epicardial $I_{Ks}$ conductance & $0.441\frac{nS}{pF}$ \ $G_{pCa}$ & Maximal $I_{pCa}$ conductance & $0.8666\frac{nS}{pF}$ \ $G_{pK}$ & Maximal $I_{pK}$ conductance & $0.00219\frac{nS}{pF}$ \ $p_{KNa}$ & Relative $I_{Ks}$ permeability to Na & $0.03$ \ $G_{K1}$ & Maximal $I_{K1}$ conductance & $5.405\frac{nS}{pF}$ \ $G_{to}$ & Epicardial $I_{to}$ conductance & $0.294\frac{nS}{pF}$ \ $G_{Na}$ & Maximal $I_{Na}$ conductance & $14.838\frac{nS}{pF}$ \ $G_{bNa}$ & Maximal $I_{bNa}$ conductance & $0.00029\frac{nS}{pF}$ \ $K_{mK}$ & $K_o$ half-saturation constant of $I_{NaK}$ & $1.0 mM$ \ $K_{mNa}$ & $Na_i$ half-saturation constant of $I_{NaK}$ & $40.0 mM$ \ $K_{NaK}$ & Maximal $I_{NaK}$ $(P_{naK})$ & $2.724mM$ \ $G_{CaL}$ & Maximal $I_{CaL}$ conductance & $0.00003980\frac{nS}{pF}$ \ $G_{bCa}$ & Maximal $I_{pCa}$ conductance & $0.000592\frac{nS}{pF}$ \ $k_{NaCa}$ & Maximal $I_{NaCa}$ & $1000$ \ $K_{mNai}$ & $Na_i$ half-saturation constant for $NaCa$ & $87.5mM$ \ $K_{mCa}$ & $Ca_i$ half-saturation constant for $I_{NaCa}$ & $1.38mM$ \ $K_{mCa}$ & Saturation factor for $I_{NaCa}$ & $0.1mM$ \ $n$ & Voltage dependence parameter of $I_{NaCa}$ & $0.35$ \ $K_{pCa}$ & Half-saturation constant of $I_{pCa}$ & $0.0005mM$ \ \end{tabularx}

\end{document}

which produces

p1

p2

p3

0

Try using,

\resizebox{\textwidth}{!}{%

\begin{tabular}[htb]{|c|l|l|}

...

\tabular}

}

Here is how it works.

      \resizebox{\textwidth}{!}{%        
       \begin{tabular}[htb]{|c|l|l|}
      \hline 
      Parameter    & Definition & Value \\
      \hline
R & Gas Constant & $8.3143 \frac{J}{Kmol}$ \\
T & Temperature & $310K$ \\
F & Faraday constant & $96.4867 \frac{C}{mmol}$ \\
$C_m$ & Cell capacitance per unit surface area & $0.185 \frac{\mu F}{cm^2}$ \\
$K_O $ & Extracellular $K^+$ concentration & $5.4 mM$ \\
$Ca_O$ & Extracellular $Ca^{+2}$ concentration & $2.0 mM$ \\
$Na_O$ & Extracellular $Na^{+2}$ concentration& $140.0 mM $ \\
$V_C$ & Cytoplasmic volume & $0.016404 \mu m^3$ \\
$V_SR$ & Sarcoplasmic reticulum volume & $0.001094 \mu m^3$ \\
$V_SS$ & Subspace volume & $0.00005468 m^3$ \\
$Buf_c$ & Total cytoplasmic buffer concentration & $0.2mM$ \\
$K_{Bufc}$ & $Ca_i$ half-saturation constant for cytoplasmic buffer & $0.001mM$ \\
$Buf_{sr}$ & Total sarcoplasmic buffer concentration & $10.0 mM$ \\
$K_{bufsr}$ & $Ca_{SR}$ half-saturation constant for sarcoplasmic buffer & $0.3mM$ \\
$Buf_{ss}$ & Total subspace buffer concentration & $0.4 mM$ \\
$K_{bufss}$ & $Ca_{SS}$ half-saturation constant for subspace buffer & $0.00025 mM$ \\
$V_{maxup}$ & Maximal $I_{up}$ & $0.006375 mM$ \\
$K_{up}$ & Half-saturation constant of $I_{up}$ & $0.00025 mM$ \\
$V_{rel}$ & Maximal $I_{rel}$ conductance & $0.102 \frac{mM}{ms}$ \\
$K_1$ & R to O and RI to I $I_{rel}$ transition rate & $0.15 \frac{mM}{ms}$ \\
$K_2$ & O to I and R to RI $I_{rel}$l transition rate & $0.045\frac{mM}{ms}$ \\
$K_3$ & O to R and I to RI $I_{rel}$ transition rate & $0.060 \frac{mM}{ms}$ \\
$K_4$ & I to O and RI to I $I_{rel}$ transition rate & $0.005 \frac{mM}{ms}$ \\
$G_{CaSR}$ & CaSR half-saturation constant of $K_{CaSR}$ & $1.5 mM$ \\
$Max_{SR}$ & Maximum value of $K_{CaSR}$ & $2.5$ \\
$Min_{SR}$ & Minimum value of $K_{CaSR}$ & $1$ \\
$V_{leak}$ & Maximal $I_{leak}$ conductance & $0.00036 \frac{mM}{ms}$ \\
$V_{xfer}$ & Maximal $I_{xfer}$ conductance & $0.0038 \frac{mM}{ms}$ \\
$G_{kr}$ & Maximal $I_{Kr}$ conductance & $0.172\frac{nS}{pF}$ \\
$G_{ks}$ & Maximal epicardial $I_{Ks}$ conductance & $0.441\frac{nS}{pF}$ \\
$G_{pCa}$ & Maximal $I_{pCa}$ conductance & $0.8666\frac{nS}{pF}$ \\
$G_{pK}$ & Maximal $I_{pK}$ conductance & $0.00219\frac{nS}{pF}$ \\
$p_{KNa}$ & Relative $I_{Ks}$ permeability to Na & $0.03$ \\
$G_{K1}$ & Maximal $I_{K1}$ conductance & $5.405\frac{nS}{pF}$ \\
$G_{to}$ & Epicardial $I_{to}$ conductance & $0.294\frac{nS}{pF}$ \\
$G_{Na}$ & Maximal $I_{Na}$ conductance & $14.838\frac{nS}{pF}$ \\
$G_{bNa}$ & Maximal $I_{bNa}$ conductance & $0.00029\frac{nS}{pF}$ \\
$K_{mK}$ & $K_o$ half-saturation constant of $I_{NaK}$ & $1.0 mM$ \\
$K_{mNa}$ & $Na_i$ half-saturation constant of $I_{NaK}$ & $40.0 mM$ \\
$K_{NaK}$ & Maximal $I_{NaK} (P_{naK}) & $2.724mM$ \\
$G_{CaL}$ & Maximal $I_{CaL}$ conductance & $0.00003980\frac{nS}{pF}$ \\
$G_{bCa}$ & Maximal $I_{pCa}$ conductance & $0.000592\frac{nS}{pF}$ \\
$k_{NaCa}$ & Maximal $I_{NaCa}$ & $1000$ \\
$K_{mNai}$ & $Na_i$ half-saturation constant for $NaCa$ & $87.5mM$ \\
$K_{mCa}$ & $Ca_i$ half-saturation constant for $I_{NaCa} & $1.38mM$ \\
$K_{mCa}$ & Saturation factor for $I_{NaCa}$ & $0.1mM$ \\
$n$ & Voltage dependence parameter of $I_{NaCa}$ & $0.35$ \\
$K_{pCa}$ & Half-saturation constant of $I_{pCa}$ & $0.0005mM$ \\
      \hline
    \end{tabular}
     }
  \end{center}
\end{table}
  • 2
    Personally, I reckon resizebox around a table can only be a last resort, since it may lead to inconsistent size. – Teddy van Jerry Mar 31 '22 at 00:55
  • @TeddyvanJerry I am pretty new to LaTeX. I started using it for my physics lab report in January, so I only know what I need to know. I always use resizebox, but what is the best way of resizing a table so that it fits on the page and is aligned with the text margins? – Alison Frayne Mar 31 '22 at 01:30