0

This is my working example:

\documentclass{article}
\usepackage[utf8]{inputenc}

\begin{document} \section{table of model and predictions}

\begin{table}[h] \begin{tabular}{lllll} %\begin{longtable}{lllll} \hline & & & & \ \multicolumn{5}{c}{expandedsystem} \ \multicolumn{1}{c}{} & & & & \ \hline & & & & \ \textbf{Dynamical Systems} & & Original Systems & & System Expanded \ \textbf{} & & & & \ \hline & & & & \ Saddle-Node & & & & $\dot{\alpha} = 0.8 + 4e-10t + 3e-3t^2$ \ & & $\dot{x} = \alpha- x^3$ & & $\dot{x} = \alpha- x^3$ \ & & & & \ \hline & & & & \ Pitchfork & & & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \ & & $\dot{x} = \alpha- x^2$ & & $\dot{x} = \alpha- x^2$ \ & & & & \ \hline & & & & \ Hopf & & & & $\dot{\alpha} =-t+t^2-t^3$ \ & & & & \ & & $\dot{x}{1} =\alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}{1} =\alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \ & & & & \ & & $\dot{x}{2} =x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}{2} =x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \ & & & & \ \hline & & & & \ Lorentz & & & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{x}= \sigma(y-x)$ & & $\dot{x}= \sigma(y-x)$ \ & & & & \ & & $\dot{y}= x(\rho-z)-y$ & & $\dot{y}= x(\rho-z)-y$ \ & & & & \ & & $\dot{z}= x y-\beta z$ & & $\dot{z}= x y-\beta z$ \ & & & & \ \hline & & & & \ Van Der Pol & & & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{x}= y$ & & $\dot{x}= y$ \ & & & & \ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \ & & & & \ \hline & & & & \ Hodgin-Huxley & & & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \ & & & & \ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \ & & & & \ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \ & & & & \ \hline & & & & \ Fitzhugh- Nagumo & & & & $\dot{\alpha} = 1.1 + 0.92t$ \ & & $\dot{u}= \epsilon g(u) -w + I$ & & $\dot{u}= \epsilon g(u) -w + I$ \ & & & & \ & & $\dot{w}= u - aw$ & & $\dot{w}= u - aw$ \ & & & & \ \hline & & & & \ Bistable Toggle Switch & & & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \ & & & & \ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \ & & & & \ & & & & \ \hline \end{tabular} \end{table} %\end{longtable} %\end{table}

\end{document}

The table is too long: The table go inconveniently the bottom of the page

when I use longtable the table shows unexpectedly extrange: This is the code:

\documentclass{article}
\usepackage[utf8]{inputenc}

\begin{document} \section{table of model and predictions}

\begin{longtable}{lllll} \hline & & & & \ \multicolumn{5}{c}{expandedsystem} \ \multicolumn{1}{c}{} & & & & \ \hline & & & & \ \textbf{Dynamical Systems} & & Original Systems & & System Expanded \ \textbf{} & & & & \ \hline & & & & \ Saddle-Node & & & & $\dot{\alpha} = 0.8 + 4e-10t + 3e-3t^2$ \ & & $\dot{x} = \alpha- x^3$ & & $\dot{x} = \alpha- x^3$ \ & & & & \ \hline & & & & \ Pitchfork & & & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \ & & $\dot{x} = \alpha- x^2$ & & $\dot{x} = \alpha- x^2$ \ & & & & \ \hline & & & & \ Hopf & & & & $\dot{\alpha} =-t+t^2-t^3$ \ & & & & \ & & $\dot{x}{1} =\alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}{1} =\alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \ & & & & \ & & $\dot{x}{2} =x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & & $\dot{x}{2} =x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \ & & & & \ \hline & & & & \ Lorentz & & & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{x}= \sigma(y-x)$ & & $\dot{x}= \sigma(y-x)$ \ & & & & \ & & $\dot{y}= x(\rho-z)-y$ & & $\dot{y}= x(\rho-z)-y$ \ & & & & \ & & $\dot{z}= x y-\beta z$ & & $\dot{z}= x y-\beta z$ \ & & & & \ \hline & & & & \ Van Der Pol & & & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{x}= y$ & & $\dot{x}= y$ \ & & & & \ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \ & & & & \ \hline & & & & \ Hodgin-Huxley & & & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & & & \ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \ & & & & \ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \ & & & & \ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \ & & & & \ \hline & & & & \ Fitzhugh- Nagumo & & & & $\dot{\alpha} = 1.1 + 0.92t$ \ & & $\dot{u}= \epsilon g(u) -w + I$ & & $\dot{u}= \epsilon g(u) -w + I$ \ & & & & \ & & $\dot{w}= u - aw$ & & $\dot{w}= u - aw$ \ & & & & \ \hline & & & & \ Bistable Toggle Switch & & & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \ & & & & \ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \ & & & & \ & & & & \ \hline \end{longtable}

\end{document}

The table changes as follows: Bad display of the table when using longtable

JuanMuñoz
  • 1,454
  • 1
    no that latex minds but why have 5 columns with column 2 and 4 empty? – David Carlisle Apr 09 '22 at 15:19
  • 1
    Your second example code is missing \usepackage{longtable}. When I add that, the output for me does not look like your second image, but more like your first image split over two pages as I think you wanted. – frabjous Apr 09 '22 at 15:33
  • When I leave off \usepackage{longtable}, I do get your image. But just above that, I get the lllll. I also get 133 errors, the first one being "Environment longtable undefined". Don't ignore errors. My wild guess is that you have columns 2 and 4 empty to spread out the columns a bit. Don't do that; use https://tex.stackexchange.com/q/16519/107497 instead. – Teepeemm Apr 09 '22 at 15:49

2 Answers2

1

Your table code is a big mess. I try to clean up all clutter. Hopefully I correct figured out how the table should be. Now table hast three columns, from which last two are in math mode.

For table I use tabularray and geometry (for make \textwidth wider) package. With this your table can be fit in one page.

Edit: Anyway, I use longtblr table environment for sake that your real table has more rows (which you can add on the same way as are written other table rows) or it not start at top of page (see added example below).

\documentclass{article}
\usepackage{geometry}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\usepackage{lipsum}

\begin{document} \lipsum[1-2]

\section{table of model and predictions} \begingroup \begin{longtblr}[ caption = {Expanded system} ]{colspec = {@{} X[1.2] X[2, l,mode=math] X[1.8, l,mode=math] @{}}, row{1} = {font=\bfseries, c, m, mode=text}, row{2-Z} = {rowsep=3pt}, rowhead = 1 } \toprule Dynamical Systems & Original Systems
& System Expanded \ \midrule Saddle-Node
& \dot{\alpha} = 0.8 + 4e-10t + 3e-3t^2
& \ & \dot{x} = \alpha- x^3 & \dot{x} = \alpha- x^3 \ \midrule[dashed] Pitchfork
& \dot{\alpha} =4.5+2.16t + 3.39t^2
& \ & \dot{x} = \alpha- x^2
& \dot{x} = \alpha- x^2 \ \midrule[dashed] Hopf
& \dot{\alpha} =-t+t^2-t^3
& \ & \dot{x}{1} = \alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)
& \dot{x}{1} = \alpha x{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \ & \dot{x}{2} = x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
& \dot{x}{2} =x{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right) \ \midrule[dashed] Lorentz
& \dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3 & \ & \dot{x}= \sigma(y-x)
& \dot{x}= \sigma(y-x) \ & \dot{y}= x(\rho-z)-y
& \dot{y}= x(\rho-z)-y \ & \dot{z}= x y-\beta z
& \dot{z}= x y-\beta z \ \midrule[dashed] Van Der Pol
& \dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3 & \ & \dot{x}= y
& \dot{x}= y \ & \dot{y}= \alpha\left(1-x^{2}\right) y-x
& \dot{y}= \alpha\left(1-x^{2}\right) y-x \ \midrule[dashed] Hodgin-Huxley
& \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \ & \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n & \dot{n} = \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n \ & \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m & \dot{m} = \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m \ & \dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h & \dot{h}= \alpha_{h}(V_{m})(1-h)-\beta_{h}\left(V_{m}\right) h \ \midrule[dashed] Fitzhugh - Nagumo
& \dot{\alpha} = 1.1 + 0.92t & \
& \dot{u}= \epsilon g(u) -w + I
& \dot{u}= \epsilon g(u) -w + I \ & \dot{w}= u - aw & \dot{w}= u - aw \ \midrule[dashed] \SetCell[r=2]{h,l} Bistable Toggle Switch
& \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3
& \ & \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1
& \dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1 \ & \dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2 & \dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2 \ \bottomrule \end{longtblr} \endgroup \end{document}

enter image description here

Zarko
  • 296,517
0

I propose some modifications (and simplifications) of the code, based on booktabs and makecell which make the code work and produce a similar layout. Further, loading geometry avoids overfull hlines:

    \documentclass{article}
    \usepackage{geometry}
    \usepackage{longtable}
    \usepackage{makecell, booktabs}
    \setlength{\aboverulesep}{3ex}
    \setlength{\belowrulesep}{3ex}
    \renewcommand{\theadfont}{\normalsize\bfseries}
    \usepackage{lipsum}
\begin{document}
\section{table of model and predictions}
\lipsum[11-12]

\begin{longtable}{lll}
\toprule
                           & & \\
\multicolumn{3}{c}{expanded system} \\
\multicolumn{1}{c}{} & & \\
\midrule
\thead{Dynamical\\Systems} & Original Systems & System Expanded \\
\midrule
Saddle-Node & & $\dot{\alpha} = 0.8 + 4e-10*t + 3e-3*t^2$ \\
                           & $\dot{x} = \alpha- x^3$ & $\dot{x} = \alpha- x^3$ \\
\midrule
Pitchfork & & $\dot{\alpha} =4.5+2.16t + 3.39t^2$ \\
                           & $\dot{x} = \alpha- x^2$ & $\dot{x} = \alpha- x^2$ \\
\midrule
Hopf & & $\dot{\alpha} =-t+t^2-t^3$ \\
                           & & \\
                           & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{1} =\alpha x_{1}-x_{2}-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
                            & & \\
                           & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ & $\dot{x}_{2} =x_{1}+\alpha x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ \\
\midrule
Lorentz & & $\dot{\rho} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                           & & \\
                             & $\dot{x}= \sigma(y-x)$ & $\dot{x}= \sigma(y-x)$ \\
                            & & \\
                           & $\dot{y}= x(\rho-z)-y$ & $\dot{y}= x(\rho-z)-y$ \\
                           & & \\
                           & $\dot{z}= x y-\beta z$ & $\dot{z}= x y-\beta z$ \\
\midrule
Van Der Pol & & $\dot{\alpha} =1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                           & & \\
                           & $\dot{x}= y$ & $\dot{x}= y$ \\
                           & & \\
                           & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ & $\dot{y}= \alpha\left(1-x^{2}\right) y-x$ \\
\midrule
Hodgin-Huxley & & $ \dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                           & & \\
                           & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ & $\dot{n}= \alpha_{n}\left(V_{m}\right)(1-n)-\beta_{n}\left(V_{m}\right) n$ \\
                           & & \\
                           & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ & $\dot{m}= \alpha_{m}\left(V_{m}\right)(1-m)-\beta_{m}\left(V_{m}\right) m$ \\
                           & & \\
                           & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ & $\dot{h}= \alpha_{h}\left(V_{m}\right)(1-h)-\beta_{h}\left(V_{m}\right) h$ \\
\midrule
Fitzhugh- Nagumo & & $\dot{\alpha} = 1.1 + 0.92t$ \\
                           & $\dot{u}= \epsilon g(u) -w + I$ & $\dot{u}= \epsilon g(u) -w + I$ \\
                           & & \\
                           & $\dot{w}= u - aw$ & $\dot{w}= u - aw$ \\
\midrule
\makecell{Bistable\\ Toggle Switch} & & $\dot{\alpha} = 1.1 + 0.92t -0.027 t^2+ 3^{-4}t^3$ \\
                           & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ & $\dot{x}_1 = \frac{a_1}{1+(x_2)^{n_1}}-d_1x_1$ \\
                           \addlinespace[3ex]
                           & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ & $\dot{x_2} = \frac{a_2}{1+(x_1)^{n_2}}-d_2x_2$ \\
                           \bottomrule
\end{longtable}

\lipsum[13]

\end{document} 

enter image description here

Bernard
  • 271,350