I am trying to show how the tangent is below/above the curve according to the convexity of the curve. but using the tangent equation y = f'(x0)(x-x0)+f(x0) throws the line far from the curve. so I did some testing and used the following which will not work for other functions:
\documentclass{standalone}
\standaloneconfig{border=2mm 2mm 2mm 2mm}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}[scale=1]
\begin{axis}[axis lines=center,
xlabel=$x$, ylabel=$y$,
xtick=\empty,ytick=\empty,
xmin=-3, xmax=3,
ymin=-6.5, ymax=5]
\addplot [red,thick, line width=0.4mm,domain=-3:2,unbounded coords=jump] {0.4*x^3+1};
\draw [->, >=Stealth,blue] (0,1) -- (1,1);
\draw [->, >=Stealth,green] (0,1) -- (-1,1);
\foreach \i in {0.75,1.5,...,2} {
\addplot[domain=(\i)-0.2:(\i)+0.4, samples=100, color=blue,thin]
{0.4*3*(\i-0.2)^2*(x-\i+0.2)+0.4*(\i-0.2)^3+1};
%it should be
% 0.4*3*(\i)^2*(x-\i)+0.4*(\i)^3+1
% f'(x0)(x-x0)+f(x0)
}
\foreach \i in {-2.25,-1.25,...,-0.5} {
\addplot[domain=(\i)-0.6:(\i)+0.2, samples=100, color=blue,thin]
{0.4*3*(\i)^2*(x-\i)+0.4*(\i)^3+1};
%same here
}
\end{axis}
\end{tikzpicture}
\end{document}
