Here's a not fully automatic solution. It doesn't work if I use \xs in the definition of the function in plot, so I had to put this in manually (and therefore, statically). For the respective domains, I renamed your reused help macros \x and \y to \xa and \ya up to \xa and \xf, thus they can be used later. Then it's only conacatenating a lot of plot and -- commands. The -- is important, otherwise each individual plot is closed, resulting in a weird diamond shape.
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\def\bndmax{5}
\def\bndmin{0.2}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\draw (-3,-3) grid (3,3);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{tikzpicture}
\end{document}

Edit 1: Just some minor improvements:
- expanded the grid to 10x10
- imprved the overall clipping
- fixed the boundaries such that all functions are drawn over the full domain
- put the blue filling on a background layer, so it does not patially overlap the functions or points
.
\documentclass[tikz]{standalone}
\usetikzlibrary{calc}
\pgfdeclarelayer{background layer}
\pgfsetlayers{background layer,main}
\begin{document}
\def\bndmax{6.5}
\def\bndmin{0.15}
\def\xS{1.5}
\def\gR{1.618034} % The golden ratio
\begin{tikzpicture}
\clip (-5cm-0.2pt,-5cm-0.2pt) rectangle (5cm+0.pt,5cm+0.2pt);
\draw (-5,-5) grid (5,5);
\draw[thick] (-5,0) -- (5,0);
\draw[thick] (0,-5) -- (0,5);
\tikzset{func/.style={thick,color=orange!90}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\begin{scope}[shift={(\xS,1/\xS)}]
\tikzset{func/.style={thick,color=orange!60,dashed}}
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{-1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (\x,{1/\x});
\draw[func,domain=-\bndmax:-\bndmin] plot [samples=200] (-\x,{-1/\x});
\end{scope}
\fill (\xS,1/\xS) circle (2pt);
\pgfmathsetmacro\xa{-\gR*\xS}
\pgfmathsetmacro\ya{1/(\gR*\xS)}
\coordinate (p1) at (\xa,\ya);
\pgfmathsetmacro\xb{-(1/\gR)*\xS}
\pgfmathsetmacro\yb{\gR*(1/\xS)}
\coordinate (p2) at (\xb,\yb);
\pgfmathsetmacro\xc{1/(\gR*\gR)*\xS}
\pgfmathsetmacro\yc{\gR*\gR/\xS)}
\coordinate (p3) at (\xc,\yc);
\pgfmathsetmacro\xd{(1/\gR)*\xS}
\pgfmathsetmacro\yd{-\gR*(1/\xS)}
\coordinate (p4) at (\xd,\yd);
\pgfmathsetmacro\xe{\gR*\xS}
\pgfmathsetmacro\ye{-1/(\gR*\xS)}
\coordinate (p5) at (\xe,\ye);
\pgfmathsetmacro\xf{\gR*\gR*\xS}
\pgfmathsetmacro\yf{1/(\gR*\gR*\xS)}
\coordinate (p6) at (\xf,\yf);
\foreach \i in {1,2,3,4,5,6}
\fill[red] (p\i) circle (2pt) node[right]{$p_{\i}$};
\begin{pgfonlayer}{background layer}
\clip (p1) plot[domain=\xa:\xb] (\x,{-1/\x}) -- plot[domain=\xb:\xc] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xc:\xf] (\x,{1/\x}) -- plot[domain=\xf:\xe] (\x,{-1/(\x-1.5)+1/1.5}) -- plot[domain=\xe:\xd] (\x,{-1/\x}) -- plot[domain=\xd:\xa] (\x,{1/(\x-1.5)+1/1.5}) --cycle;
\fill[opacity=0.3,blue!30!cyan] (\xa,\yd) rectangle (\xf,\yc);
\end{pgfonlayer}
\end{tikzpicture}
\end{document}

p1top6, "eaten away" up to the functions. – Tom Bombadil Aug 23 '12 at 17:00\draw (<p>) plot (<f1>) plot (<f2>);would do waht I want, but is was really\draw (<p>) plot (<f1>) -- plot (<f2>);– Tom Bombadil Aug 23 '12 at 17:33