1
\begin{equation}\label{eq:f_formulation}
\left\{
\begin{alignedat}{3}
\E(u,z) &= \int_I(u_N,z)_{L^2(\Gamma_N)}+ \int_I(u_V,z)&\\
 &\text{for all } z \in W_{,0D} \text{ with } z(T)=0\\
\tr u &= u_D \text{ on } \Sigma_D &
\end{alignedat}
\right.
\end{equation}

An equivalent variational version is finding $u=u_0 + E u_D$, $u_0 \in W_{,0D}$ with
\begin{equation}
\left \{
\begin{alignedat}{3}\label{eq:f_formulation_variational}
\E(u_0,z) &= -\E(E u_D,z) + \int_I(u_N,z)_{L^2(\Gamma_N)}+ \int_I(u_V,z)&\\
\text{for all } z \in W_{,0D} \text{ with } z(T)=0\\
\tr u_0 &= 0 \text{ on } \Sigma_D &
\end{alignedat}
\right.
\end{equation}

Results:

enter image description here

I want the second equation to look as the first one, in terms of alignement: the second line's end should match up with the first line's end. With the two equals signs still being aligned. Any hint on how to achieve this?

Thanks!

Lilla
  • 215

1 Answers1

1

You can typeset the condition as a zero width box sticking to the left.

\documentclass{article}
\usepackage{amsmath}

\newcommand{\E}{\mathcal{E}} \DeclareMathOperator{\tr}{tr}

\begin{document}

\begin{equation}\label{eq:f_formulation} \left{ \begin{alignedat}{2} \E(u,z) &= \int_I(u_N,z){L^2(\Gamma_N)}+ \int_I(u_V,z)&&\ &&&\makebox[0pt][r]{for all $z \in W{,0D}$ with $z(T)=0$}\ \tr u &= u_D \text{ on } \Sigma_D & \end{alignedat} \right. \end{equation}

\end{document}

enter image description here

On the other hand, I see no need to look for alignment of unrelated objects.

\documentclass{article}
\usepackage{amsmath}

\newcommand{\E}{\mathcal{E}} \DeclareMathOperator{\tr}{tr}

\begin{document}

\begin{equation}\label{eq:f_formulation} \left{ \begin{aligned} & \E(u,z) = \int_I(u_N,z){L^2(\Gamma_N)}+ \int_I(u_V,z) \ & \qquad\text{for all $z \in W{,0D}$ with $z(T)=0$} \[1ex] & \tr u = u_D \text{ on } \Sigma_D \end{aligned} \right. \end{equation}

\end{document}

enter image description here

Or, if you want that the condition is right-aligned with the top equation,

\documentclass{article}
\usepackage{amsmath}

\newcommand{\E}{\mathcal{E}} \DeclareMathOperator{\tr}{tr}

\begin{document}

\begin{equation}\label{eq:f_formulation} \left{ \begin{alignedat}{2} &\E(u,z) = \int_I(u_N,z){L^2(\Gamma_N)}+ \int_I(u_V,z) \ &&\makebox[0pt][r]{for all $z \in W{,0D}$ with $z(T)=0$} \[1ex] &\tr u = u_D \text{ on } \Sigma_D \end{alignedat} \right. \end{equation}

\end{document}

enter image description here

egreg
  • 1,121,712