0

Following the question Half Sphere with lines each 5 degree on the x-axis, I am trying to recreate the figure below: enter image description here

The code I have so far is:

\documentclass[tikz]{standalone}
\usetikzlibrary{arrows.meta, 3d, quotes}
\tikzset{
  math nodes/.style={execute at begin node=$, execute at end node=$},
  edges/.style={every edge/.append style={#1}}}
\begin{document}

\begin{tikzpicture}[ thin, > = {Latex [round]}, x = (-10:2.75cm), y = (90:3cm), z = (-140:1.8cm), axis/.style={very thick, red!50!black}, math nodes, at end, dot/.style={shape=circle, draw, inner sep=+0pt, minimum size=+2.5pt}, ang 90/.style={thick, nodes=fill, nodes={name=n\pos}}, pos 9/.style=fill ] \coordinate (O) at (0, 0, 0); \path[axis, ->] (O) edge["y" right] (1.3, 0, 0 ) edge["z" above] (0, 1.3, 0 ) [-] edge (0, 0, 1.4 ) [edges=dashed] edge (-1.3, 0, 0 ) edge ( 0, -1.3, 0 ) edge ( 0, 0, -1.3);

\foreach \ang in {10, 20, ..., 90} \draw[ang \ang/.try] (xyz spherical cs: radius=0, latitude=\ang) % start point for arc [canvas is xy plane at z=\ang/90] % arc is 2d → XY cs in xz plane circle[start angle=0, delta angle=180, radius=cos \ang];

\foreach \ang in {0, 10, ..., 180} \draw[ang \ang/.try] (xyz spherical cs: radius=1, latitude=0, longitude=\ang) % start point for arc arc[start angle=180, delta angle=180, radius=1] node foreach \pos in {1, ..., 18} [dot, pos \pos/.try, pos=\pos/19]{};

% Top and bottom nodes (no need to do an arc with radius 0 or place these 18 times) \node foreach \y in {-1, 1} [dot, pos 9] at (0, \y, 0) {};

% z-axis on top of globe but not on top of dot path[axis, ->] (n9) edge["x" below left] +(0, 0, 1.4); \end{tikzpicture} \end{document}

OUTPUT:

![enter image description here

The circles are in place, the arcs start at the correct points, but I'm not sure how to rotate the arcs to achieve the desired output. Any ideas?

AruGip
  • 33
  • One usually uses the pgfplots or tikz-3dplot package to change the viewpoint angle (lattitude/longitude). The tikz-3dplot manual expains the 3d coordinate transformation matrix. – John Kormylo Oct 22 '23 at 14:15

0 Answers0