I want to make a frame transition as seen here. http://www.slideshare.net/thomasmach/hierarchical-matrices-concept-application-and-eigenvalues i.e. from

to

Move from slide 8/67 to 9/67. I am wondering what is the right and the best way to go about.
EDIT: As an example, to the slide below I want to add the arrows and make it look like the slide 9/67 as seen here.

\documentclass{beamer} %
\usetheme{CambridgeUS}
\usepackage[latin1]{inputenc}
\usefonttheme{professionalfonts}
\usepackage{times}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{verbatim}
\usetikzlibrary{arrows,shapes}
\author{Author}
\title{Presentation title}
\begin{document}
\section{Concept}
\subsection{Dense matrices}
\begin{frame}{Dense matrices}
\begin{itemize}
\item Dense matrix
$$
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n}\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{bmatrix}
$$
\end{itemize}
\begin{itemize}
\item
$n^2$ entries in the storage.
\item
Matrix vector product: $Ax$ costs $\mathcal{O}(n^2)$.
\item
Matrix matrix product: $AB$ costs $\mathcal{O}(n^\delta)$ flops, $\delta \geq 2.3727$ practically $\mathcal{O}(n^3)$.
\item
Matrix factorizations: LU, QR, SVD etc costs $\mathcal{O}(n^3)$.
\end{itemize}
\end{frame}
\end{document}

\tikzmarktype of solution. It would be helpful if you composed a fully compilable MWE including\documentclassand the appropriate packages that sets up the problem. While solving problems is fun, setting them up is not. I personally know very little aboutbeamerbut if I had something to start with I could certainly enhance it with a\tikzmarkto show you how to obtain the desired result. – Peter Grill Oct 14 '12 at 03:59