Here is a prototype in LaTeX3; the data about tomorrow is available in the integer variables
\l_tomorrow_day_int
\l_tomorrow_month_int
\l_tomorrow_year_int
The code follows; the final macro is just an example of how the data can be used, possibly in connection with datetime.
\documentclass{article}
\ExplSyntaxOn
\prop_new:N \g_tomorrow_months_prop
\bool_new:N \l_tomorrow_leap_bool
\tl_new:N \l_tomorrow_daysinmonth_tl
\int_new:N \l_tomorrow_day_int
\int_new:N \l_tomorrow_month_int
\int_new:N \l_tomorrow_year_int
\prop_gput:Nnn \g_tomorrow_months_prop { 1 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 2 } { \bool_if:NTF \l_tomorrow_leap_bool { 29 } { 28 } }
\prop_gput:Nnn \g_tomorrow_months_prop { 3 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 4 } { 30 }
\prop_gput:Nnn \g_tomorrow_months_prop { 5 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 6 } { 30 }
\prop_gput:Nnn \g_tomorrow_months_prop { 7 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 8 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 9 } { 30 }
\prop_gput:Nnn \g_tomorrow_months_prop { 10 } { 31 }
\prop_gput:Nnn \g_tomorrow_months_prop { 11 } { 30 }
\prop_gput:Nnn \g_tomorrow_months_prop { 12 } { 31 }
\cs_new_protected:Npn \tomorrow_check_leap:n #1
{
\int_compare:nTF { 0 = \int_mod:nn { #1 } { 4 } }
{% possibly a leap year
\int_compare:nTF { 0 = \int_mod:nn { #1 } { 100 } }
{% possibly not a leap year
\int_compare:nTF { 0 = \int_mod:nn { #1/100 } { 4 } }
{% leap year
\bool_set_true:N \l_tomorrow_leap_bool
}
{% not leap year
\bool_set_false:N \l_tomorrow_leap_bool
}
}
{% leap year
\bool_set_true:N \l_tomorrow_leap_bool
}
}
{% not leap year
\bool_set_false:N \l_tomorrow_leap_bool
}
}
\cs_new_protected:Npn \tomorrow_set_tomorrow:nnn #1 #2 #3
{
\int_compare:nT { #2 = 2 } { \tomorrow_check_leap:n { #3 } }
\int_set:Nn \l_tomorrow_day_int { #1 }
\int_set:Nn \l_tomorrow_month_int { #2 }
\int_set:Nn \l_tomorrow_year_int { #3 }
__tomorrow_incr_day:
}
\cs_new_protected:Npn __tomorrow_incr_day:
{
\int_incr:N \l_tomorrow_day_int
\prop_get:NVN \g_tomorrow_months_prop \l_tomorrow_month_int \l_tomorrow_daysinmonth_tl
\int_compare:nT
{ \l_tomorrow_day_int > \tl_use:N \l_tomorrow_daysinmonth_tl }
{
\int_set:Nn \l_tomorrow_day_int { 1 }
__tomorrow_incr_month:
}
}
\cs_new_protected:Npn __tomorrow_incr_month:
{
\int_incr:N \l_tomorrow_month_int
\int_compare:nT { \l_tomorrow_month_int > 12 }
{
\int_set:Nn \l_tomorrow_month_int { 1 }
\int_incr:N \l_tomorrow_year_int
}
}
\cs_generate_variant:Nn \prop_get:Nn { NV,Ne }
\NewDocumentCommand{\printtomorrowof}{mmm}
{
\tomorrow_set_tomorrow:nnn { #1 } { #2 } { #3 }
Today~it~is~
\int_to_arabic:n { #3 }/
\int_to_arabic:n { #2 }/
\int_to_arabic:n { #1 },~
tomorrow~it~is~
\int_to_arabic:n { \l_tomorrow_year_int }/
\int_to_arabic:n { \l_tomorrow_month_int }/
\int_to_arabic:n { \l_tomorrow_day_int }
\par
}
\ExplSyntaxOff
\begin{document}
\printtomorrowof{\day}{\month}{\year}
\printtomorrowof{30}{10}{2012}
\printtomorrowof{31}{10}{2012}
\printtomorrowof{31}{12}{2012}
\printtomorrowof{28}{2}{2012}
\printtomorrowof{28}{2}{2013}
\printtomorrowof{28}{2}{1900}
\printtomorrowof{28}{2}{2000}
\end{document}
As you see, leap years are correctly recognized. Only Gregorian calendar, of course.
In order to define a suitable \tomorrow command, you can add (before \ExplSyntaxOn) a babel version
\NewDocumentCommand{\tomorrow}{}
{
\tomorrow_set_tomorrow:nnn { \day } { \month } { \year }
\group_begin:
\day = \l_tomorrow_day_int
\month = \l_tomorrow_month_int
\year = \l_tomorrow_year_int
\today
\group_end:
}
or a datetime version (requires package datetime, of course)
\NewDocumentCommand{\tomorrow}{}
{
\tomorrow_set_tomorrow:nnn { \day } { \month } { \year }
\formatdate { \l_tomorrow_day_int }
{ \l_tomorrow_month_int }
{ \l_tomorrow_year_int }
}

This is, of course, overkill if one wants only tomorrow's date. The macros actually allow to compute any date from a given one, given the interval (positive or negative). One might make expandable also the "reverse" from a Julian date to the form "Day/Month/Year", but it would be very slow.
\documentclass{article}
\usepackage{xparse}
\ExplSyntaxOn
\DeclareExpandableDocumentCommand{\juliandate}{ m m m }
{
\juliandate_calc:nnnn { #1 } { #2 } { #3 } { \use:n }
}
\NewDocumentCommand{\storejuliandate}{ s m m m m }
{
\IfBooleanTF{#1}
{
\juliandate_calc:nnnn { #3 } { #4 } { #5 } { \cs_set:Npx #2 }
}
{
\juliandate_calc:nnnn { #3 } { #4 } { #5 } { \cs_new:Npx #2 }
}
}
\cs_new:Npn \juliandate_calc:nnnn #1 #2 #3 #4 % #1 = day, #2 = month, #3 = year, #4 = what to do
{
#4
{
\int_eval:n
{
#1 +
\int_div_truncate:nn { 153 * (#2 + 12 * \int_div_truncate:nn { 14 - #2 } { 12 } - 3) + 2 } { 5 } +
365 * (#3 + 4800 - \int_div_truncate:nn { 14 - #2 } { 12 } ) +
\int_div_truncate:nn { #3 + 4800 - \int_div_truncate:nn { 14 - #2 } { 12 } } { 4 } -
\int_div_truncate:nn { #3 + 4800 - \int_div_truncate:nn { 14 - #2 } { 12 } } { 100 } +
\int_div_truncate:nn { #3 + 4800 - \int_div_truncate:nn { 14 - #2 } { 12 } } { 400 } -
32045
}
}
}
\tl_new:N \l__juliandate_g_tl
\tl_new:N \l__juliandate_dg_tl
\tl_new:N \l__juliandate_c_tl
\tl_new:N \l__juliandate_dc_tl
\tl_new:N \l__juliandate_b_tl
\tl_new:N \l__juliandate_db_tl
\tl_new:N \l__juliandate_a_tl
\tl_new:N \l__juliandate_da_tl
\tl_new:N \l__juliandate_y_tl
\tl_new:N \l__juliandate_m_tl
\tl_new:N \l__juliandate_d_tl
\int_new:N \l_juliandate_day_int
\int_new:N \l_juliandate_month_int
\int_new:N \l_juliandate_year_int
\cs_new:Npn __juliandate_set:nn #1 #2
{
\tl_set:cx { l__juliandate_#1_tl } { \int_eval:n { #2 } }
}
\cs_new:Npn __juliandate_use:n #1
{
\tl_use:c { l__juliandate_#1_tl }
}
\cs_new_protected:Npn \juliandate_reverse:n #1
{
__juliandate_set:nn { g }
{ \int_div_truncate:nn { #1 + 32044 } { 146097 } }
__juliandate_set:nn { dg }
{ \int_mod:nn { #1 + 32044 } { 146097 } }
__juliandate_set:nn { c }
{ \int_div_truncate:nn { ( \int_div_truncate:nn { __juliandate_use:n { dg } } { 36524 } + 1) * 3 } { 4 } }
__juliandate_set:nn { dc }
{ __juliandate_use:n { dg } - __juliandate_use:n { c } * 36524 }
__juliandate_set:nn { b }
{ \int_div_truncate:nn { __juliandate_use:n { dc } } { 1461 } }
__juliandate_set:nn { db }
{ \int_mod:nn { __juliandate_use:n { dc } } { 1461 } }
__juliandate_set:nn { a }
{ \int_div_truncate:nn { ( \int_div_truncate:nn { __juliandate_use:n { db } } { 365 } + 1) * 3 } { 4 } }
__juliandate_set:nn { da }
{ __juliandate_use:n { db } - __juliandate_use:n { a } * 365 }
__juliandate_set:nn { y }
{
__juliandate_use:n { g } * 400 +
__juliandate_use:n { c } * 100 +
__juliandate_use:n { b } * 4 +
__juliandate_use:n { a }
}
__juliandate_set:nn { m }
{ \int_div_truncate:nn { __juliandate_use:n { da } * 5 + 308 } { 153 } - 2 }
__juliandate_set:nn { d }
{ __juliandate_use:n { da } - \int_div_truncate:nn { (__juliandate_use:n { m } + 4) * 153 } { 5 } + 122 }
\int_set:Nn \l_juliandate_year_int
{ __juliandate_use:n { y } - 4800 + \int_div_truncate:nn { __juliandate_use:n { m } + 2 } { 12 } }
\int_set:Nn \l_juliandate_month_int
{ \int_mod:nn { __juliandate_use:n { m } + 2 } { 12 } + 1 }
\int_set:Nn \l_juliandate_day_int
{ __juliandate_use:n { d } + 1 }
}
\cs_generate_variant:Nn \juliandate_reverse:n { x }
\NewDocumentCommand{\showday}{ m }
{
\juliandate_reverse:n { #1 }
\int_to_arabic:n { \l_juliandate_day_int }-
\int_to_arabic:n { \l_juliandate_month_int }-
\int_to_arabic:n { \l_juliandate_year_int }
}
\NewDocumentCommand{\tomorrow}{ }
{
\group_begin:
\juliandate_reverse:x { \juliandate_calc:nnnn { \day + 1 } { \month } { \year } { \use:n } }
\day = \l_juliandate_day_int
\month = \l_juliandate_month_int
\year = \l_juliandate_year_int
\today
\group_end:
}
\NewDocumentCommand{\tomorrowof}{ m m m }
{
\group_begin:
\juliandate_reverse:x { \juliandate_calc:nnnn { #1 + 1 } { #2 } { #3 } { \use:n } }
\day = \l_juliandate_day_int
\month = \l_juliandate_month_int
\year = \l_juliandate_year_int
\today
\group_end:
}
\ExplSyntaxOff
\begin{document}
\juliandate{18}{12}{2012}
\storejuliandate*{\x}{18}{12}{2012}\x
\storejuliandate*{\x}{1}{1}{1900}\x
\showday{2456280}
\showday{2415021}
\tomorrow
\tomorrowof{31}{12}{2012}
\tomorrowof{28}{2}{2012}
\tomorrowof{29}{2}{2012}
\tomorrowof{28}{2}{2013}
\tomorrowof{28}{2}{1900}
\end{document}
\todaythen the only difficult part of \tomorrow is the date arithemtic, all \tommorrow can just locally add 1 day to \year\month\day taking care of date arithemetic, and then just do \today – David Carlisle Dec 18 '12 at 01:14\def\tomorrow{\advance\day 1\relax\today\advance -1\relax}– Max Dec 18 '12 at 01:24\def\dategerman{\def\today{\number\day.~\month@german \space\number\year}} \def\dateaustrian{\def\today{\number\day.~\ifnum1=\month J\"anner\else \month@german\fi \space\number\year}}so if your preamble has \dateaustian \today will give a localised today and{add a day to \day\month\year \today}will give a localised tomorrow, you can't simply \advance\day 1 as you need to take account of month arithmetic, but perhaps that's what you meant? – David Carlisle Dec 18 '12 at 01:55