An alternative suggestion in terms of the output is given in the last example below:

\documentclass{article}
\usepackage{amsmath,multido}% http://ctan.org/pkg/{amsmath,multido}
\newcommand{\conjclass}[1]{%
\def\conjclasssep{\def\conjclasssep{\,}}%
\ifnum#1>0\relax
\multido{\i=1+1}{#1}{\conjclasssep{\cdot}}
\fi%
}
\begin{document}
The conjugacy classes of the symmetric group are simply given by
the cycle types, so there are five in $S_4$: $Id$, $(\cdot \cdot)$,
$(\cdot \cdot)(\cdot \cdot)$, $(\cdot \cdot \cdot)$, and $(\cdot \cdot \cdot \cdot)$.
The conjugacy classes of the symmetric group are simply given by
the cycle types, so there are five in $S_4$: $\text{Id}$, $(\cdot{}\cdot)$,
$(\cdot{}\cdot)(\cdot{}\cdot)$, $(\cdot{}\cdot{}\cdot)$, and
$(\cdot{}\cdot{}\cdot{}\cdot)$.
The conjugacy classes of the symmetric group are simply given by
the cycle types, so there are five in $S_4$: $\text{Id}$, $({\cdot}{\cdot})$,
$({\cdot}{\cdot})({\cdot}{\cdot})$, $({\cdot}{\cdot}{\cdot})$, and
$({\cdot}{\cdot}{\cdot}{\cdot})$.
The conjugacy classes of the symmetric group are simply given by
the cycle types, so there are five in $S_4$: $\text{Id}$, $(\conjclass{2})$,
$(\conjclass{2})(\conjclass{2})$, $(\conjclass{3})$, and $(\conjclass{4})$.
\end{document}
The last example provides \conjclass{<num>} which sets \cdot as a "\mathord" (using {\cdot}), but also prints <num> with a predefined spacing \, between each element. Depending on your usage (quantity), it promotes consistency when defining a macro (see Consistent typography).
The technique used to delay the initial space is from Cunning (La)TeX tricks.
As a side-note: See the use of $\text{Id}$ instead of $Id$. It looks better...
$Id$means that) should be declared using\DeclareMathOperator{\Id}{Id}in the preamble. – Svend Tveskæg Feb 25 '13 at 23:10