If you use amsmath (and I recommend you do), the definition of \sin is
\renewcommand\sin{\qopname\relax o{sin}}
so you just need something like
\renewcommand\sin[1][]{\qopname\relax o{sin}%
\ifx\relax#1\relax\else^{#1}\fi % test if the argument is empty
}
Doing this for all the functions is really annoying, so you can abstract it by
\newcommand{\changefunction}[1]{%
\expandafter\renewcommand\csname#1\endcsname[1][]%
{\qopname\relax o{#1}\ifx\relax##1\relax\else^{##1}\fi}}
and then
\changefunction{sin}
\changefunction{cos}
\changefunction{tan}
Finally, you can do
\renewcommand{\arcsin}{\sin[-1]}
Complete example:
\documentclass{article}
\usepackage{amsmath}
\newcommand{\changefunction}[1]{%
\expandafter\renewcommand\csname#1\endcsname[1][]%
{\qopname\relax o{#1}\ifx\relax##1\relax\else^{##1}\fi}}
\changefunction{sin}
\changefunction{cos}
\changefunction{tan}
\renewcommand{\arcsin}{\sin[-1]}
\begin{document}
$\sin\alpha+\sin[2]\alpha\ne\arcsin(1/2)$
\end{document}

From a LaTeX point of view I don't think you gain anything with these definitions:
\sin^{2}
is as easy to type as \sin[2] and clearer.
From a mathematical point of view, I find that the notation you want to use for the arcsine is ambiguous and confusing. If the exponent "2" means "square the sine", the exponent "–1" will mean to a student "the reciprocal of the sine".