Here is a solution, without fancy drawing for the Earth, but which shows the varying solar radiation as the Earth travels along the hyperbolic orbit.
Note: an elliptical version is available here.

\documentclass{article}
\usepackage{tikz}
\begin{document}
\begin{center}
\begin{tikzpicture}[scale=2]
\pgfmathsetmacro{\e}{1.44022} % eccentricity of the hyperbola
\pgfmathsetmacro{\a}{1}
\pgfmathsetmacro{\b}{\a*sqrt((\e)^2 - 1)}
\pgfmathsetmacro{\c}{sqrt((\a)^2+(\b)^2} % distance from centre to focus
\pgfmathsetmacro{\Sunradius}{0.2} % Sun radius
\pgfmathsetmacro{\Earthradius}{0.05} % Earth radius
\pgfmathsetmacro{\thetamax}{1.5}
\draw plot[domain = -\thetamax:\thetamax] ({\a*cosh(\x)}, {\b*sinh(\x)});
\draw (\c,0) circle (1pt);
\shade[%
top color=yellow!70,%
bottom color=red!70,%
shading angle={45},%
] (\c,0) circle (\Sunradius);
% This function computes the direction in which light hits the Earth.
\pgfmathdeclarefunction{f}{1}{%
\pgfmathparse{
((-\c+\a*cosh(#1))<0) * ( 180 + atan( \b*sinh(#1)/(-\c+\a*cosh(#1)) ) )
+
((-\c+\a*cosh(#1))>=0) * ( atan( \b*sinh(#1)/(-\c+\a*cosh(#1)) ) )
}
}
% This function computes the distance between Earth and the Sun,
% which is used to calculate the varying radiation intensity on Earth.
\pgfmathdeclarefunction{d}{1}{%
\pgfmathparse{ sqrt((-\c+\a*cosh(#1))^2+(\b*sinh(#1))^2) }
}
\pgfmathtruncatemacro{\N}{8} % an even number is best here
\pgfmathsetmacro{\thetaoffset}{.15*\thetamax}
\foreach \k in {0,1,...,\N}{
\pgfmathsetmacro{\theta}{(\thetamax-\thetaoffset)*(2*\k/\N-1)}
\pgfmathsetmacro{\radiation}{100*(1-\c)/d(\theta))^2}
\colorlet{Earthlight}{yellow!\radiation!blue}
\shade[
top color=Earthlight,
bottom color=blue,
shading angle={90+f(\theta)},
] ({\a*cosh(\theta)}, {\b*sinh(\theta)}) circle (\Earthradius);
}
\end{tikzpicture}
\end{center}
\end{document}
EDIT: with a nice .png of the Earth at the focus instead.

The picture I used is adapted from the one posted there.

\documentclass{article}
\usepackage{tikz}
\begin{document}
\begin{center}
\begin{tikzpicture}[scale=2]
\pgfmathsetmacro{\e}{1.44022} % eccentricity of the hyperbola
\pgfmathsetmacro{\a}{1}
\pgfmathsetmacro{\b}{\a*sqrt((\e)^2 - 1)}
\pgfmathsetmacro{\c}{sqrt((\a)^2+(\b)^2} % distance from centre to focus
\pgfmathsetmacro{\Earthradius}{0.1} % Earth radius
\pgfmathsetmacro{\UFOradius}{.03}
\pgfmathsetmacro{\thetamax}{1.2}
\draw plot[domain = -\thetamax:\thetamax] ({\a*cosh(\x)}, {\b*sinh(\x)});
\path (\c,0) node(a) {\includegraphics[width=.5cm]{earth.png}};
\pgfmathtruncatemacro{\N}{8} % an even number is best here
\pgfmathsetmacro{\thetaoffset}{.05*\thetamax}
\foreach \k in {0,1,...,\N}{
\pgfmathsetmacro{\theta}{(\thetamax-\thetaoffset)*(2*\k/\N-1)}
\shade[top color=black,bottom color=gray]
({\a*cosh(\theta)}, {\b*sinh(\theta)}) circle (\UFOradius);
}
\end{tikzpicture}
\end{center}
\end{document}
pspictureis environment inPSTricksanalogous totikzpictureenvironment totikz-pgf. I don't think they can be combined as their workflow is different. But the pdf output from pstricks can be attached to a node in TikZ. – texenthusiast Apr 16 '13 at 05:58xelatexor the routelatex->dvips->ps2pdf. But why can't you use only PSTricks? – Apr 16 '13 at 11:43