2

\begin{enumerate}
  \item $\mathcal{D}(m)=0$ for $m\in\mathbb{Z}$,

  \item $\mathcal{D}(x^{-1})=-x^{-1}\sigma(x^{1})\mathcal{D}(x)$,

  \item $\mathcal{D}(x^{n})=\left( {\sigma ({x^{n - 1}}) + \sigma ({x^{n - 2}})x + ... + \sigma (x){x^{n - 2}} + {x^{n - 1}}} \right)\mathcal{D}(x)$,

  \item $\mathcal{D}(x^{-n})=- \left( {\sigma ({x^-n}){x^-1} + \sigma ({x^{-(n - 1)}}){x^-2} + ... + \sigma ({x^-2}){x^{-(n - 1)}} + \sigma ({x^-1}){x^-n}} \right)\mathcal{D}(x)$ for $n\geq1$.
\end{enumerate}

How can I fit the last equation in article'paper size?

Cade
  • 23
  • 1
    Could you please make it a fully compilable example? It is helping solvers a lot to actually start experimenting with the code! – Malipivo Apr 12 '14 at 13:09
  • One option is to use the \sum notation: \item $\mathcal{D}(x^{-n})= -\mathcal{D}(x)\sum_{i=1}^{n}\sigma ({x^{-n+i-1}}){x^{i}}$, for $n\geq1$. – Gonzalo Medina Apr 12 '14 at 13:44
  • LaTeX won't break the equation, since the breaking point doesn't lie with an operator. You may have to rewrite the equation (perhaps using a different notation) or manually break it. – Werner Apr 12 '14 at 13:46
  • Thank u for advice Gonzalo Medina but it was thougt. My post is only a sample for this porblem. – Cade Apr 12 '14 at 16:39

1 Answers1

1

My recommendation would be to use the inner aligned environment and make the equation over several lines:

enter image description here

Notes:


You could also consider aligning the left hand side of the equations. The MWE below produces a right alignment:

enter image description here

But by replacing the [r] with a [l] in the \MakeBox you get:

enter image description here

I think I prefer the [r] aligned version.


Code: aligned

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{showframe}

\begin{document}

\begin{enumerate} \item $\mathcal{D}(m)=0$ for $m\in\mathbb{Z}$,

\item $\mathcal{D}(x^{-1})=-x^{-1}\sigma(x^{1})\mathcal{D}(x)$,

\item $\mathcal{D}(x^{n})=\left( {\sigma ({x^{n - 1}}) + \sigma ({x^{n - 2}})x + ... + \sigma (x){x^{n - 2}} + {x^{n - 1}}} \right)\mathcal{D}(x)$,

\item $\begin{aligned}[t]\mathcal{D}(x^{-n}) &=- \Big( \sigma ({x^-n}){x^{-1}} + \sigma ({x^{-(n - 1)}}){x^-2} + \dotsb \ &\qquad+ \sigma ({x^-2}){x^{-(n - 1)}} + \sigma ({x^{-1}}){x^-n} \Big)\mathcal{D}(x) \text{ for } n\geq1. \end{aligned}$ \end{enumerate}

\end{document}


Code: aligned with \MakeBox:

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{calc}

\usepackage{showframe}

\newcommand*{\MakeBox}[1]{\makebox[\widthof{$\mathcal{D}(x^{-n})$}][r]{$#1$}}%

\begin{document}

\begin{enumerate} \item $\MakeBox{\mathcal{D}(m)}=0$ for $m\in\mathbb{Z}$,

\item $\MakeBox{\mathcal{D}(x^{-1})}=-x^{-1}\sigma(x^{1})\mathcal{D}(x)$,

\item $\MakeBox{\mathcal{D}(x^{n})}=\left( {\sigma ({x^{n - 1}}) + \sigma ({x^{n - 2}})x + ... + \sigma (x){x^{n - 2}} + {x^{n - 1}}} \right)\mathcal{D}(x)$,

\item $\begin{aligned}[t]\mathcal{D}(x^{-n}) &=- \Big( \sigma ({x^-n}){x^{-1}} + \sigma ({x^{-(n - 1)}}){x^-2} + \dotsb \ &\qquad+ \sigma ({x^-2}){x^{-(n - 1)}} + \sigma ({x^{-1}}){x^-n} \Big)\mathcal{D}(x) \text{ for } n\geq1. \end{aligned}$ \end{enumerate}

\end{document}

Peter Grill
  • 223,288