I am currently working with some pretty big matrices and was wondering how I could better format them to make my final proof appear less sloppy. What formatting techniques can I use to better present these matrices?

\documentclass[reqno]{amsart}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\begin{enumerate}
\begin{enumerate}
\item
\begin{proof}
\begin{align*} A^n\begin{pmatrix} 1 \\ 0 \end{pmatrix}&=P\begin{pmatrix}
\left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n
\end{pmatrix}P^{-1}\begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\begin{pmatrix}
F_{n+1} \\ F_n
\end{pmatrix}&=\begin{pmatrix}
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\[4pt] 1 & 1
\end{pmatrix}\begin{pmatrix}
\left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\[4pt] 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n
\end{pmatrix}P^{-1}\begin{pmatrix} 1 \\[4pt] 0 \end{pmatrix} \\
&=\left(\frac{1}{10}\right)\begin{pmatrix}
\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} & \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \\ \left(\frac{1+\sqrt{5}}{2}\right)^n & \left(\frac{1-\sqrt{5}}{2}\right)^n
\end{pmatrix}\begin{pmatrix}
2\sqrt{5} & 5-\sqrt{5} \\[4pt]-2\sqrt{5} & 5+\sqrt{5}
\end{pmatrix}\begin{pmatrix}
1 \\ 0
\end{pmatrix} \\
&=\left(\frac{1}{10}\right)\begin{pmatrix} 2\sqrt{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-2\sqrt{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1} & (5-\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}+(5+\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \\ 2\sqrt{5}\left(\frac{1+\sqrt{5}}{2}\right)^n-2\sqrt{5}\left(\frac{1-\sqrt{5}}{2}\right)^n & (5-\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^n+(5+\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^n
\end{pmatrix}\begin{pmatrix}
1 \\ 0
\end{pmatrix} \\
\begin{pmatrix}
F_{n+1} \\ F_n
\end{pmatrix}&=\left(\frac{1}{10}\right)\begin{pmatrix}
2\sqrt{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-2\sqrt{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \\ 2\sqrt{5}\left(\frac{1+\sqrt{5}}{2}\right)^n-2\sqrt{5}\left(\frac{1-\sqrt{5}}{2}\right)^n
\end{pmatrix}
\end{align*}
We see that $F_n$ must equal the bottom entry in this matrix. $$F_n=\frac{1}{10}\left(2\sqrt{5}\left(\frac{1+\sqrt{5}}{2}\right)^n-2\sqrt{5}\left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$ Which simplifies to $$F_n=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n \right]$$.
\end{proof}
\end{enumerate}
\end{enumerate}
\end{document}

\varphiinstead of\frac{1+\sqrt{5}}{2}and, say,\bar\phifor\frac{1-\sqrt{5}}{2}. This will immediately reduce the size of your equations. – egreg Nov 20 '15 at 09:42