I'm not sure if it's the best solution, but adjustbox can help to align different kind of boxes.
\documentclass{article}
\usepackage{amsmath,array, adjustbox, lipsum}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\begin{document}
\lipsum[1]
\begin{enumerate}
\item \adjustbox{frame, valign=t, center}{\begin{tabular}{c c C{6cm}}
$\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$ & = & the amplitude\newline for a particle to propagate from $y$ to $x$\newline(in the Heisenberg picture).
\end{tabular}}
\item Some other text
\end{enumerate}
\end{document}

Update: frame inner margins and tabular inside adjustbox
From OP's comment, it seems some larger inner margin is needed inside previous frame.
adjustbox offers option margin (always placing it before frame) which fixes inner box margins. This option accepts one, two or four values for setting all margins, horizontal and vertical or left, bottom, right and top margin. If only some margin between top line and first inner text line, option could be margin=0 0 0 2ex. In next code only two values are used.
Apart from this, adjustbox also offers special syntax for specific environments, like tabular. Therefore an option like tabular=ccc means that second parameter will have a three tabular structure. It saves some typing. This option can be used with \adjustbox command or with adjustbox environment. In first case an additional \\ must be added after last tabular line.
Following code shows all three possible declarations:
\documentclass{article}
\usepackage{amsmath,array, adjustbox, lipsum}
\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
\begin{document}
\lipsum[1]
\begin{enumerate}
\item \adjustbox{margin=0ex 2ex, frame, valign=t, center}
{\begin{tabular}{c c C{6cm}}
$\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$
& = &
the amplitude\newline for a particle to propagate
from $y$ to $x$\newline(in the Heisenberg picture).
\end{tabular}}
\item \adjustbox{margin=0ex 2ex, frame, valign=t, center,
tabular={c c C{6cm}}}{
$\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$
& = &
the amplitude\newline for a particle to propagate
from $y$ to $x$\newline(in the Heisenberg picture).\\}
\item \begin{adjustbox}{margin=0ex 2ex, frame, valign=t, center,
tabular={c c C{6cm}}}
$\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$
& = &
the amplitude\newline for a particle to propagate
from $y$ to $x$\newline(in the Heisenberg picture).
\end{adjustbox}
\end{enumerate}
\end{document}

\begin{tabular}[t]{c c p{10 cm}}? Note the[t]. – Arash Esbati Jan 19 '16 at 15:56\begin{tabular}[t]....– cmhughes Jan 19 '16 at 15:56\documentclass{article} \usepackage{amsmath} \begin{document} \begin{enumerate} \item \begin{tabular}[t]{c c p{10 cm}} $\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$ & = & the amplitude\newline for a particle to propagate from $y$ to $x$\newline (in the Heisenberg picture). \end{tabular} \end{enumerate} \end{document}– Arash Esbati Jan 19 '16 at 16:05\documentclass{article} \usepackage{amsmath} \usepackage{array} \newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}\begin{document} \begin{enumerate} \item \begin{tabular}[t]{c c C{10 cm}} $\langle 0 \lvert \phi(x)\phi(y)\lvert 0 \rangle$ & = & the amplitude\newline for a particle to propagate from $y$ to $x$\newline (in the Heisenberg picture). \end{tabular} \end{enumerate} \end{document}. – nightmarish Jan 19 '16 at 16:15