OK, it has been a rainy Saturday afternoon, but I must be crazy to have wasted more than three hours doing this…
The idea is that, since (La)TeX is a language primarily designed to handle text with math, the lack of a “math-flavored” answer (apart from Guido’s “minimalist contribution”) was a gap that ought to be filled. This answer applies well-known techniques to define a \mathwitch operator, intended for denoting the operation of applying black magic to the ensuing subformula. I’ve made this operator follow the usual conventions (\displaylimits) if used, e.g., with indexed wizardry.
% My standard header for TeX.SX answers:
\documentclass[a4paper]{article} % To avoid confusion, let us explicitly
% declare the paper format.
\usepackage[T1]{fontenc} % Not necessary, but recommended.
% End of standard header. What follows pertains to the problem at hand.
\usepackage{amsmath}
% Old uncle Gustavo prefers to stick to the "picture" environment:
\usepackage{pict2e}
\usepackage{lipsum}
%--------------------------------------------------------------%
\makeatletter
\newcommand@MCl@Large@witch[1]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height 5\unitlength @depth\thr@@\unitlength
\begin{picture}(12,2)(-6,-1)%
\linethickness{\p@}%
\Line(-2,-2)(6,2)%
\linethickness{.4\p@}%
\Line(-2,-2)(-5,-2.5)%
\Line(-2,-2)(-4.85,-2.95)%
\Line(-2,-2)(-4.6,-3.3)%
\Line(-2,-2)(-4.35,-3.65)%
\Line(-2,-2)(-4,-4)%
\Line(0,1.8)(-.2,1.4)%
\polyline(.6,3.2)(.8,3)(1.5,3)%
\put(1.6,3){\oval(.2,.2)[tl]}%
\put(1.6,3){\oval(.2,.2)[r]}%
\polyline(1.6,2.9)(1.8,2.4)(1.2,2.4)(1,2.5)(1,2.3)%
(1.2,2)(1.6,1.8)(1.7,1.8)(1.7,1.6)(1.4,1.5)%
(0,1.8)(-.2,2)%
\Line(.2,2.8)(.6,3)%
\polygon(-1,2)(-2,0)(-2,-1)(-1.5,-2)(1,-2)%
(0,-3.6)(.4,-3.8)(.6,-3.4)(.8,-4)(2,-4)%
(1,-3.6)(1,-3)(1.6,-3.2)(2,-1.5)(0,-1)%
(0,-.6)(1.4,-.6)(1.8,-.4)(2,0)(0,0)%
(0,1.4)%
\polygon(-3,2)(-2.8,3)(-2,4)(-1.5,4.1)(-1,4)(0,3.5)%
(1,3.8)(2.5,3.5)(3,3.3)(2,3.4)(0,3)(-1,2)(-2,1.6)%
(-2.7,2)(-2,2)(-1,3)(-2,3.5)(-2.6,3)%
\linethickness{.1\p@}%
\Line(1.7,1.6)(2,1.6)%
\Line(1.7,1.6)(1.9,1.4)%
\Line(1.7,1.6)(1.7,1.3)%
\end{picture}%
}
\newcommand@MCl@Small@witch[3]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height \thr@@\unitlength @depth@ne\unitlength
\begin{picture}(6,2)(-3,-1)%
\linethickness{#3\p@}%
\Line(-1,-1)(3,1)%
\linethickness{#2\p@}%
\Line(-1,-1)(-2.5,-1.25)%
\Line(-1,-1)(-2.4,-1.5)%
\Line(-1,-1)(-2.25,-1.75)%
\Line(-1,-1)(-2,-2)%
\Line(0,.9)(-.1,.7)%
\polyline(.3,1.6)(.4,1.5)(.75,1.5)(.9,1.2)(.5,1.2)%
(.6,1)(.8,.9)(.7,.75)(0,.9)(-.1,1)%
\Line(.1,1.4)(.3,1.5)%
\polygon(-.5,1)(-1,0)(-1,-.5)(-.75,-1)(.5,-1)%
(0,-1.8)(.2,-1.9)(.3,-1.7)(.4,-2)(1,-2)%
(.5,-1.8)(.5,-1.5)(.8,-1.6)(1,-.75)(0,-.5)%
(0,-.3)(.7,-.3)(.9,-.2)(1,0)(0,0)%
(0,.7)%
\polygon(-1.5,1)(-1.4,1.5)(-1,2)(-.5,2)(0,1.75)%
(.5,1.9)(1.25,1.75)(0,1.5)(-.5,1)(-1,.8)%
(-1.2,1)(-1,1)(-.5,1.5)(-1,1.75)(-1.3,1.5)%
\end{picture}%
}
% User-level command:
\newcommand*\mathwitch{%
\mathop{%
\mathchoice{%
@MCl@Large@witch \textfont
}{%
@MCl@Small@witch \textfont {.3}{.8}%
}{%
@MCl@Small@witch \scriptfont {.2}{.5}%
}{%
@MCl@Small@witch \scriptscriptfont {.1}{.3}%
}%
}% \displaylimits % as per default
}
\makeatother
%--------------------------------------------------------------%
\begin{document}
A reduction my students are likely to make:
[\mathwitch \frac{\sin x}{s} = x,\mathrm{in}]
The same reduction as an in-line formula:
(\mathwitch \frac{\sin x}{s} = x,\mathrm{in}).
Test for ``operator-like'' behavior: $\mathwitch x$ versus
$\mathwitch(x)$---does anybody note the difference?
Let us also check that our $\mathwitch$~symbol does not make the lines further
apart than usual. Here it is again:\nobreak\space $\mathwitch b$.
\lipsum*[2]
Now with limits:
[
\mathwitch_{i=1}^{n} \frac
{\text{$i$-th magic term}}
{\text{$2^{i}$-th wizardry}}
]
And repeated in-line: ( \mathwitch_{i=1}^{n} x_{i}y_{i} ).
Test for other math styles: subscript~$F_{!\mathwitch\alpha}$, in-line
fraction ( \frac{\mathwitch m}{\mathwitch n} ), double superscript (
2^{2^{\mathwitch\aleph_{0}}} ) (this one looks really awkward!).
\begingroup
\Huge
Look at the details of the display-size version:
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
]
Please note the beard\ldots~:-)\par
\endgroup
\end{document}
The output of this sample page:

Addition
Wasted more time (only twenty minutes or so, fortunately…) to provide support for the bold math version:
% My standard header for TeX.SX answers:
\documentclass[a4paper]{article} % To avoid confusion, let us explicitly
% declare the paper format.
\usepackage[T1]{fontenc} % Not necessary, but recommended.
% End of standard header. What follows pertains to the problem at hand.
\usepackage{amsmath}
% Old uncle Gustavo prefers to stick to the "picture" environment:
\usepackage{pict2e}
\usepackage{lipsum}
%--------------------------------------------------------------%
\makeatletter
\newcommand@MCl@Large@witch[4]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height 5\unitlength @depth\thr@@\unitlength
\begin{picture}(12,2)(-6,-1)%
\linethickness{#3\p@}%
\Line(-2,-2)(6,2)%
\linethickness{#2\p@}%
\Line(-2,-2)(-5,-2.5)%
\Line(-2,-2)(-4.85,-2.95)%
\Line(-2,-2)(-4.6,-3.3)%
\Line(-2,-2)(-4.35,-3.65)%
\Line(-2,-2)(-4,-4)%
\Line(0,1.8)(-.2,1.4)%
\polyline(.6,3.2)(.8,3)(1.5,3)%
\put(1.6,3){\oval(.2,.2)[tl]}%
\put(1.6,3){\oval(.2,.2)[r]}%
\polyline(1.6,2.9)(1.8,2.4)(1.2,2.4)(1,2.5)(1,2.3)%
(1.2,2)(1.6,1.8)(1.7,1.8)(1.7,1.6)(1.4,1.5)%
(0,1.8)(-.2,2)%
\Line(.2,2.8)(.6,3)%
\polygon(-1,2)(-2,0)(-2,-1)(-1.5,-2)(1,-2)%
(0,-3.6)(.4,-3.8)(.6,-3.4)(.8,-4)(2,-4)%
(1,-3.6)(1,-3)(1.6,-3.2)(2,-1.5)(0,-1)%
(0,-.6)(1.4,-.6)(1.8,-.4)(2,0)(0,0)%
(0,1.4)%
\polygon(-3,2)(-2.8,3)(-2,4)(-1.5,4.1)(-1,4)(0,3.5)%
(1,3.8)(2.5,3.5)(3,3.3)(2,3.4)(0,3)(-1,2)(-2,1.6)%
(-2.7,2)(-2,2)(-1,3)(-2,3.5)(-2.6,3)%
\linethickness{#4\p@}%
\Line(1.7,1.6)(2,1.6)%
\Line(1.7,1.6)(1.9,1.4)%
\Line(1.7,1.6)(1.7,1.3)%
\end{picture}%
}
\newcommand@MCl@Small@witch[3]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height \thr@@\unitlength @depth@ne\unitlength
\begin{picture}(6,2)(-3,-1)%
\linethickness{#3\p@}%
\Line(-1,-1)(3,1)%
\linethickness{#2\p@}%
\Line(-1,-1)(-2.5,-1.25)%
\Line(-1,-1)(-2.4,-1.5)%
\Line(-1,-1)(-2.25,-1.75)%
\Line(-1,-1)(-2,-2)%
\Line(0,.9)(-.1,.7)%
\polyline(.3,1.6)(.4,1.5)(.75,1.5)(.9,1.2)(.5,1.2)%
(.6,1)(.8,.9)(.7,.75)(0,.9)(-.1,1)%
\Line(.1,1.4)(.3,1.5)%
\polygon(-.5,1)(-1,0)(-1,-.5)(-.75,-1)(.5,-1)%
(0,-1.8)(.2,-1.9)(.3,-1.7)(.4,-2)(1,-2)%
(.5,-1.8)(.5,-1.5)(.8,-1.6)(1,-.75)(0,-.5)%
(0,-.3)(.7,-.3)(.9,-.2)(1,0)(0,0)%
(0,.7)%
\polygon(-1.5,1)(-1.4,1.5)(-1,2)(-.5,2)(0,1.75)%
(.5,1.9)(1.25,1.75)(0,1.5)(-.5,1)(-1,.8)%
(-1.2,1)(-1,1)(-.5,1.5)(-1,1.75)(-1.3,1.5)%
\end{picture}%
}
% User-level command:
\newcommand*\mathwitch{%
\def@tempa{bold}%
\mathop{%
\ifx\math@version@tempa
\mathchoice{%
@MCl@Large@witch \textfont {.6}{1.2}{.15}%
}{%
@MCl@Small@witch \textfont {.4}{}%
}{%
@MCl@Small@witch \scriptfont {.3}{.6}%
}{%
@MCl@Small@witch \scriptscriptfont {.15}{.4}%
}%
\else
\mathchoice{%
@MCl@Large@witch \textfont {.3}{.8}{.1}%
}{%
@MCl@Small@witch \textfont {.2}{.5}%
}{%
@MCl@Small@witch \scriptfont {.15}{.3}%
}{%
@MCl@Small@witch \scriptscriptfont {.1}{.2}%
}%
\fi
}% \displaylimits % as per default
}
\makeatother
%--------------------------------------------------------------%
\begin{document}
A reduction my students are likely to make:
[\mathwitch \frac{\sin x}{s} = x,\mathrm{in}]
The same reduction as an in-line formula:
(\mathwitch \frac{\sin x}{s} = x,\mathrm{in}).
Test for ``operator-like'' behavior: $\mathwitch x$ versus
$\mathwitch(x)$---does anybody note the difference?
Let us also check that our $\mathwitch$~symbol does not make the lines further
apart than usual. Here it is again:\nobreak\space $\mathwitch b$.
\lipsum*[2]
Now with limits:
[
\mathwitch_{i=1}^{n} \frac
{\text{$i$-th magic term}}
{\text{$2^{i}$-th wizardry}}
]
And repeated in-line: ( \mathwitch_{i=1}^{n} x_{i}y_{i} ).
Test for other math styles: subscript~$F_{!\mathwitch\alpha}$, in-line
fraction ( \frac{\mathwitch m}{\mathwitch n} ), double superscript (
2^{2^{\mathwitch\aleph_{0}}} ) (this one looks really awkward!).
\begingroup
\Huge
Look at the details of the display-style version:
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
]
Please note the beard\ldots~:-)\par
\endgroup
Now we've also got the \texttt{bold} math version:\mathversion{bold}
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\textbf{something terribly}}{\textbf{complicated}}
= 0
]
Compare it with \texttt{normal} math\mathversion{normal}:
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
]
In-line math comparison: {\boldmath $\mathwitch f(x)$} versus $\mathwitch f(x)$.
\end{document}
Output:

Second Addition
I know it is crazy to insist, but I got bewitched…
Instead of using an operator, you might want to denote the (fundamental!) operation of applying black magic to a formula by means of an extensible math accent, similar to using \overrightarrow. The following code adds an \overrightbroom command for this purpose. Note that is just a stub: its \overleftbroom counterpart is still missing.
% My standard header for TeX.SX answers:
\documentclass[a4paper]{article} % To avoid confusion, let us explicitly
% declare the paper format.
\usepackage[T1]{fontenc} % Not necessary, but recommended.
% End of standard header. What follows pertains to the problem at hand.
\usepackage{amsmath}
% \usepackage{amsfonts}
% Old uncle Gustavo prefers to stick to the "picture" environment:
\usepackage{pict2e}
%--------------------------------------------------------------%
\makeatletter
% Drawing the larger witch:
\newcommand@MWi@Large@witch[4]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height 5\unitlength @depth\thr@@\unitlength
\begin{picture}(12,2)(-6,-1)%
\linethickness{#3\p@}%
\Line(-2,-2)(6,2)%
\linethickness{#2\p@}%
\Line(-2,-2)(-5,-2.5)%
\Line(-2,-2)(-4.85,-2.95)%
\Line(-2,-2)(-4.6,-3.3)%
\Line(-2,-2)(-4.35,-3.65)%
\Line(-2,-2)(-4,-4)%
\Line(0,1.8)(-.2,1.4)%
\polyline(.6,3.2)(.8,3)(1.5,3)%
\put(1.6,3){\oval(.2,.2)[tl]}%
\put(1.6,3){\oval(.2,.2)[r]}%
\polyline(1.6,2.9)(1.8,2.4)(1.2,2.4)(1,2.5)(1,2.3)%
(1.2,2)(1.6,1.8)(1.7,1.8)(1.7,1.6)(1.4,1.5)%
(0,1.8)(-.2,2)%
\Line(.2,2.8)(.6,3)%
\polygon(-1,2)(-2,0)(-2,-1)(-1.5,-2)(1,-2)%
(0,-3.6)(.4,-3.8)(.6,-3.4)(.8,-4)(2,-4)%
(1,-3.6)(1,-3)(1.6,-3.2)(2,-1.5)(0,-1)%
(0,-.6)(1.4,-.6)(1.8,-.4)(2,0)(0,0)%
(0,1.4)%
\polygon*(-3,2)(-2.8,3)(-2,4)(-1.5,4.1)(-1,4)(0,3.5)%
(1,3.8)(2.5,3.5)(3,3.3)(2,3.4)(0,3)(-1,2)(-2,1.6)%
(-2.7,2)(-2,2)(-1,3)(-2,3.5)(-2.6,3)%
\linethickness{#4\p@}%
\Line(1.7,1.6)(2,1.6)%
\Line(1.7,1.6)(1.9,1.4)%
\Line(1.7,1.6)(1.7,1.3)%
\end{picture}%
}
% Drawing the smaller witch:
\newcommand@MWi@Common@small@body{%
\Line(0,.9)(-.1,.7)%
\polyline(.3,1.6)(.4,1.5)(.75,1.5)(.9,1.2)(.5,1.2)%
(.6,1)(.8,.9)(.7,.75)(0,.9)(-.1,1)%
\Line(.1,1.4)(.3,1.5)%
\polygon(-.5,1)(-1,0)(-1,-.5)(-.75,-1)(.5,-1)%
(0,-1.8)(.2,-1.9)(.3,-1.7)(.4,-2)(1,-2)%
(.5,-1.8)(.5,-1.5)(.8,-1.6)(1,-.75)(0,-.5)%
(0,.7)%
\polygon(-1.5,1)(-1.4,1.5)(-1,2)(-.5,2)(0,1.75)%
(.5,1.9)(1.25,1.75)(0,1.5)(-.5,1)(-1,.8)%
(-1.2,1)(-1,1)(-.5,1.5)(-1,1.75)(-1.3,1.5)%
}
\newcommand@MWi@Small@witch[3]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\vrule @width\z@ @height\z@ @depth@ne\unitlength
\begin{picture}(6,3)(-3,-1)%
\linethickness{#3\p@}%
\Line(-1,-1)(3,1)%
\linethickness{#2\p@}%
\Line(-1,-1)(-2.5,-1.25)%
\Line(-1,-1)(-2.4,-1.5)%
\Line(-1,-1)(-2.25,-1.75)%
\Line(-1,-1)(-2,-2)%
@MWi@Common@small@body
\polygon*(0,-.3)(.7,-.3)(.9,-.2)(1,0)(0,0)%
\end{picture}%
}
% Helper macros for "\overrightbroom":
\newcommand@MWi@mathpalette[6]{%
% A version of "\mathpalette" adapted to our needs, in which
% the macro passed in #1 must take (at least) four arguments,
% as follows:
% #1 := style selection for main style
% #2 := style selection for "relative-script" style
% #3 := font family selector (e.g., "\scriptfont")
% #4 := user-defined parameter
% #5 := main argument
% Below, we'll use the user-defined parameter to pass the line
% thickness for drawing the face.
%
% The parameters for a call to this macro are the following:
% #1 := target macro
% #2 := value for user-defined parameter for display style
% #3 := value for user-defined parameter for text style
% #4 := value for user-defined parameter for script style
% #5 := value for user-defined parameter for scripscript style
\mathchoice
{#1\displaystyle \scriptstyle \scriptfont {#2}{#6}}%
{#1\textstyle \scriptstyle \scriptfont {#3}{#6}}%
{#1\scriptstyle \scriptscriptstyle \scriptscriptfont {#4}{#6}}%
{#1\scriptscriptstyle \scriptscriptstyle \scriptscriptfont {#5}{#6}}%
}
\newcommand@MWi@overarrow@with@witch[6]{%
% #1 := stretchable covering arrow
% #2 := base style
% #3 := style for covering arrow
% #4 := font family selector (e.g., "\scriptfont")
% #5 := line thickness for the witch
% #6 := base symbol
\vbox{\ialign{##\crcr
% the centered witch:
\hfil@MWi@Small@witch@wo@broom #4{#5}\hfil\crcr
\noalign{\nointerlineskip}%
% the covering broom:
#1#3\crcr
\noalign{\nointerlineskip}%
% the covered subformula:
$\m@th\hfil #2#6\hfil$\crcr
}}%
}
% Drawing the small w/o the broom:
\newcommand@MWi@Small@witch@wo@broom[2]{%
\setlength\unitlength{\fontdimen 22 #1\tw@}%
\begin{picture}(0,4)(0,-2)%
\linethickness{#2\p@}%
@MWi@Common@small@body
\polygon(-.1,.4)(1,-.9)(1,-1.2)(.8,-1.2)(-.1,0)%
\end{picture}%
}
% Extensible broom (stub):
% \DeclareMathSymbol{@MWi@left@broom@tail} {\mathrel}{AMSa}{"4B}
% \DeclareMathSymbol{@MWi@right@broom@tail}{\mathrel}{AMSa}{"4C}
\newcommand*@MWi@rightbroomfill@{%
\arrowfill@{%
\smash[t]%
% \smash % another possibility
{\ni}%
% {@MWi@left@broom@tail}% another possibility
}\relbar\relbar
}
% Checking the math version:
\newcommand*@MWi@is@bold@math{%
TT\fi
\def@tempa{bold}%
\ifx\math@version@tempa
}
% User-level commands:
\newcommand\mathwitch{%
\mathop{%
\if@MWi@is@bold@math
\mathchoice{%
@MWi@Large@witch \textfont {.6}{1.2}{.15}%
}{%
@MWi@Small@witch \textfont {.4}{}%
}{%
@MWi@Small@witch \scriptfont {.3}{.6}%
}{%
@MWi@Small@witch \scriptscriptfont {.15}{.4}%
}%
\else
\mathchoice{%
@MWi@Large@witch \textfont {.3}{.8}{.1}%
}{%
@MWi@Small@witch \textfont {.2}{.5}%
}{%
@MWi@Small@witch \scriptfont {.15}{.3}%
}{%
@MWi@Small@witch \scriptscriptfont {.1}{.2}%
}%
\fi
}% \displaylimits % as per default
}
\newcommand\overrightbroom[1]{%
\if@MWi@is@bold@math
@MWi@mathpalette
{@MWi@overarrow@with@witch@MWi@rightbroomfill@}%
{.3}{.3}{.15}{.15}% line thicknesses
{#1}%
\else
@MWi@mathpalette
{@MWi@overarrow@with@witch@MWi@rightbroomfill@}%
{.15}{.15}{.1}{.1}% line thicknesses
{#1}%
\fi
}
\makeatother
%--------------------------------------------------------------%
\begin{document}
A reduction my students are likely to make:
[\mathwitch \frac{\sin x}{s} = x,\mathrm{in}]
The same reduction as an in-line formula:
(\mathwitch \frac{\sin x}{s} = x,\mathrm{in}).
Test for ``operator-like'' behavior: $\mathwitch x$ versus
$\mathwitch(x)$---does anybody note the difference?
Let us also check that our $\mathwitch$~symbol does not make the lines further
apart than usual. Here it is again:\nobreak\space $\mathwitch b$.
A few more words to have enough plain lines in the paragraph to make it possible
to compare the leading. Was that enough? No, it wasn't: we'd like to get at
least one line further.
Now with limits:
[
\mathwitch_{i=1}^{n} \frac
{\text{$i$-th magic term}}
{\text{$2^{i}$-th wizardry}}
]
And repeated in-line: ( \mathwitch_{i=1}^{n} x_{i}y_{i} ).
Test for other math styles: subscript~$F_{!\mathwitch\alpha}$, in-line
fraction ( \frac{\mathwitch m}{\mathwitch n} ), double superscript (
2^{2^{\mathwitch\aleph_{0}}} ) (this one looks really awkward!).
\begingroup
\Huge
Look at the details of the display-style version:
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
]
Please note the beard\ldots~:-)\par
\endgroup
Now we've also got the \texttt{bold} math version:\mathversion{bold}
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\textbf{something terribly}}{\textbf{complicated}}
= 0
]
Compare it with \texttt{normal} math\mathversion{normal}:
[
\mathwitch
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
]
In-line math comparison: {\boldmath $\mathwitch f(x)$} versus $\mathwitch f(x)$.
\errorcontextlines = 1000
The \verb|\overrightbroom| command, both in-line
( \overrightbroom{x_{1}+\dots+x_{n}} )
and displayed:
\begin{align}
\overrightbroom{x_{1}+\dots+x_{n}} &= 0 &
\overrightbroom{f(x+y)} &= \overrightbroom{h(z)}+\overrightbroom{g(z)}
\end{align}
\begingroup
\bfseries \mathversion{bold}
Again in bold: in-line
\( \overrightbroom{x_{1}+\dots+x_{n}} \)
and displayed:
\begin{align*}
\overrightbroom{x_{1}+\dots+x_{n}} &= 0 &
\overrightbroom{f(x+y)} &= \overrightbroom{h(z)}+\overrightbroom{g(z)}
\end{align*}
\endgroup
Text style ( \overrightbroom{x_{1}+\dots+x_{n}}=0 )
versus script style ( P_{\overrightbroom{x_{1}+\dots+x_{n}}} ).
\end{document}
And here’s the output:

\documentclass{article} \begin{document}\centering \large November~9, 2016\par \vspace{1cm} \Huge Donald J. Trump\\is the 45th President\\of the United States of America!\end{document}count, ot talking politics should better be avoided on this site? – GuM Nov 03 '16 at 00:00foresttag even if a Forest solution is accepted to a question about trees. But I have no idea if this is what I'm meant to do or not. Is there any guidance on this? Are tags which are specific to particular answers supposed to be added to questions? – cfr Jan 06 '17 at 23:47