I am looking at number theory fractals and quite an interesting one is about how, if you color in only the odd numbers of Pascal's Triangle: it starts to look a lot like the Sierpinski Triangle.
I have found the code for generating Pascal's Triangle here Pascal's triangle in tikz. The answer I am using from it is:
\makeatletter
\newcommand\binomialCoefficient[2]{%
% Store values
\c@pgf@counta=#1% n
\c@pgf@countb=#2% k
%
% Take advantage of symmetry if k > n - k
\c@pgf@countc=\c@pgf@counta%
\advance\c@pgf@countc by-\c@pgf@countb%
\ifnum\c@pgf@countb>\c@pgf@countc%
\c@pgf@countb=\c@pgf@countc%
\fi%
%
% Recursively compute the coefficients
\c@pgf@countc=1% will hold the result
\c@pgf@countd=0% counter
\pgfmathloop% c -> c*(n-i)/(i+1) for i=0,...,k-1
\ifnum\c@pgf@countd<\c@pgf@countb%
\multiply\c@pgf@countc by\c@pgf@counta%
\advance\c@pgf@counta by-1%
\advance\c@pgf@countd by1%
\divide\c@pgf@countc by\c@pgf@countd%
\repeatpgfmathloop%
\the\c@pgf@countc%
}
\makeatother
\begin{document}
\begin{tikzpicture}
\foreach \n in {0,...,15} {
\foreach \k in {0,...,\n} {
\node at (\k-\n/2,-\n) {$\binomialCoefficient{\n}{\k}$};
}
}
\end{tikzpicture}
I have added an fcolorbox{green}{green}{$\binomialCoefficient{\n}{\k}$}; into the code but obviously that puts a box arounf all of the numbers. How do I add a colored box only to the odd numbers? Thank you.
