I'm trying to left align the following equation so that it's on the same line as 3 (a).
\begin{enumerate}
\item
\begin{align*}
|\gamma(t)| &= [\gamma(t) \cdot \gamma(t)]^{\frac{1}{2}}\\
&=[(cos(t)p + sin(t)v) \cdot (cos(t)p + sin(t)v)]^{\frac{1}{2}}\\
&=[cos^2(t)(p \cdot p) + sin^2(t)(v \cdot v) + 2cos(t)sin(t)(p \cdot v) ]^{\frac{1}{2}}
\end{align*}
\end{enumerate}
Edit:
After the fix, this is the result I get:

\item
\begin{enumerate}
\item
$\begin{aligned}[t]
|\gamma(t)| &= [\gamma(t) \cdot \gamma(t)]^{\frac{1}{2}}, \forall t \in \mathbb{R}\\
&=[(\cos(t)p + \sin(t)v) \cdot (\cos(t)p + \sin(t)v)]^{\frac{1}{2}}\\
&=[\cos^2(t)(p \cdot p) + \sin^2(t)(v \cdot v) + 2\cos(t)\sin(t)(p \cdot v) ]^{\frac{1}{2}}\\
&=[\cos^2(t)(1) + \sin^2(t)(1) + 2\cos(t)\sin(t)(0) ]^{\frac{1}{2}}\\
&=[\cos^2(t) + \sin^2(t)]^{\frac{1}{2}}\\
&=1
\end{aligned}$
\item
$\begin{aligned}
|\gamma'(t)| &= [\gamma'(t) \cdot \gamma'(t)]^{\frac{1}{2}}, \forall t \in \mathbb{R}\\
&=[(\cos(t)p + \sin(t)v)' \cdot (\cos(t)p + \sin(t)v)']^{\frac{1}{2}}\\
&=[(-\sin(t)p + \cos(t)v) \cdot (-\sin(t)p + \cos(t)v)]^{\frac{1}{2}}\\
&=[\sin^2(t)(p \cdot p) + \cos^2(t)(v \cdot v) - 2\cos(t)\sin(t)(p \cdot v) ]^{\frac{1}{2}}\\
&=[\sin^2(t)(1) + \cos^2(t)(1) - 2\cos(t)\sin(t)(0) ]^{\frac{1}{2}}\\
&=[\sin^2(t) + \cos^2(t)]^{\frac{1}{2}}\\
&=1
\end{aligned}$



alignedin an inline equation. – Display Name Mar 10 '18 at 21:50