
\documentclass{article}
\usepackage{amsmath} % only for the blablabla before the plot
\usepackage{pgfplots}
\pgfplotsset{compat=1.15}
\usetikzlibrary{calc}
\begin{document}
Your function can be plotted symmetrically in the coordinate system defined by
the principal axes of the ellipse. Your function is minimized at $x=x_0=19/10$ and
$y=y_0=9/5$ with $f(x_0,y_0)=-10.1=:z_0$. So the first step is a translation
\[ x'~=~x-x_0\;,\quad y'~=~y-y_0\quad\text{and}\quad
z'~=~z-z_0\;.\]
The second step is to rotate to the principal axes, which can be achieved by
diagronalizing the Hesse matrix of $f$,
\[
H~=~\begin{pmatrix} 4 & -2\\ -2 & 6\end{pmatrix}\;.
\]
This yields a rotation angle of $31.8^\circ$. The perhaps simplest way to
produce the figure is thus to plot the function in the principal axes system and
draw the unrotated axes by hand.
\begin{center}
\begin{tikzpicture}
\begin{axis}
[%view={135}{45},%colormap/blackwhite,
axis equal,
width=12cm,
axis lines=center, axis on top,
axis line style={draw=none},
ticks=none,
set layers=default,
domain=0:1.50,
samples=20, % this was 200, but I changed it to 20 because of my slow PC
z buffer=sort,
]
\addplot3 [surf,shader=interp,opacity=0.8,
domain y=0:180] ({1.62*cos(y)*sqrt(x)},{sin(y)*sqrt(x)},{x});
\addplot3 [surf,shader=interp,opacity=0.8,
domain y=-180:0,on layer=axis foreground] ({1.62*cos(y)*sqrt(x)},{sin(y)*sqrt(x)},{x});
\coordinate (O) at (axis cs: 0,0);
\def\AxLen{2.5}
\coordinate (oriX) at (axis cs: {\AxLen*cos(-31.8)},{\AxLen*sin(-31.8)});
\coordinate (oriY) at (axis cs: {-\AxLen*sin(-31.8)},{\AxLen*cos(-31.8)});
\coordinate (oriZ) at (axis cs: 0,0,\AxLen*1);
\coordinate (realO) at ($-{19/10}*(oriX)-{9/5}*(oriY)$);
\end{axis}
\draw[-latex] (O) -- (oriX) node[right]{$x'$};
\draw[-latex] (O) -- (oriY) node[below]{$y'$};
\draw[-latex] (O) -- (oriZ) node[right]{$z'$};
\end{tikzpicture}
\end{center}
\end{document}
EDIT: minor layout and replaced rotated by unrotated.
0.3238 pithen the axes of the paraboloid coincide with the coordinate axes, and the eccentricity is about 1.62. And then you may use e.g. this answer to draw the ellipsoid or your above code or some other appropriate code. – Mar 11 '18 at 21:47