1

I have a LaTeX file that I want to make a reference in the appendix to have the demonstration of an equation, but when I put the code it only shows me the section, it does not move to there. I have the following:

I have added the working code, when I try to add the package hyperref it does not load. Sorry because the content is in Spanish

\documentclass{article}
\usepackage{afour25}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[ddmmyyyy]{datetime}
\usepackage[utf8]{inputenc}
\usepackage[spanish]{babel}
\usepackage[utf8]{inputenc}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{graphicx}
\usepackage{listings}
\usepackage{titlesec}
\usepackage[toc,page]{appendix}
%\usepackage{hyperref}

\newcommand{\compconj}[1]
{
  \overline{#1}
}

\setcounter{section}{-1}

\pagestyle{fancy}
\fancyhf{}
\rhead{Miguel Sanz Narrillos}
\lhead{Apuntes procesamiento de señales aleatorias}
%\cfoot{Page \thepage\ of \pageref{LastPage}}
\cfoot{\thepage}
\title{Apuntes procesamiento de señales aleatorias}
\author{Miguel Sanz Narrillos}
\date{\today}


\begin{document}

\maketitle

\section{ Preliminares}

\subsection{ Algo sobre álgebra lineal}


\subsubsection{Definición matriz transpuesta conjugada}

La transpuesta conjugada de una matriz $A \in \mathbb{C}^{m*n}$ se define como:
\[A^*:=\compconj{(A^{\top})}=(\compconj{A})^{\top} \in \mathbb{C}^{m*n}\]

Esta matriz transpuesta conjugada tiene las siguientes propiedades:
\begin{enumerate}
    \item $(A+B)^*=A^* +B^*$ teniendo  $\forall A,B\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_1}
    \item $(A B)^*=B^* A^*$ teniendo $\forall A\in \mathbb{C}^{m*n}$ y  $\forall B\in \mathbb{C}^{n*p}$, demostración en: \ref{eqn:demostracion_2}
    \item $(\lambda A)^*=\compconj{\lambda} A^*$ teniendo $ \forall A\in \mathbb{C}^{m*n}$ y $\forall \lambda\in \mathbb{C}$, demostración en:  \ref{eqn:demostracion_3}
    \item $(A^*)^*=A$ teniendo $\forall A\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_4}
    \item $(A^{-1})^*=(A^*)^{-1}$ teniendo $ \forall A\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_5}
\end{enumerate}


\subsection{Observaciones}
\begin{itemize}
    \item Todas las propiedades de las matrices reales con las operaciones del álgebra lineal para el caso real siguen siendo ciertas en el caso complejo, con demostraciones idénticas porque solo usan la estructura de cuerpo $\mathbb{R}$ y $\mathbb{C}$ también lo es.
\end{itemize}

\begin{appendices}
\section{Demostraciones:}
\subsection{Demostración 1}\label{eqn:demostracion_1}

\[(A+B)^{*}=A^{*}+B^{*}\]

\[[(A+B)^{*}]_{j,k}=[(\compconj{(A+B)})^{\top}]_{j,k}=\compconj{[(A+B)^{\top}]_{j,k}}=\compconj{[A+B]_{k,j}}=\compconj{[A]_{k,j}}+\compconj{[B]_{k,j}}=\]

\[=\compconj{[A^{\top}]_{j,k}}+\compconj{[B^{\top}]_{j,k}}=[A^{*}]_{j,k}+[B^{*}]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 2}\label{eqn:demostracion_2}

\[(A*B)^{*}=B^{*}*A^{*}\]

\[[(A*B)^{*}]_{j,k}=[\compconj{(A*B)^{\top}}]_{j,k}=[\compconj{(A*B)]_{j,k}^{\top}}=[\compconj{(A*B)]_{k,j}}=[\compconj{A}]_{k,p}*[\compconj{B}]_{p,j}=\]

\[=[\compconj{B^{\top}}]_{j,p}*[\compconj{A^{\top}}]_{p,k}=[B^{*}]_{j,p}*[A^{*}]_{p,k}\]

\[\forall A \in \mathbb{C}^{m*p}\]
\[\forall B \in \mathbb{C}^{p*n}\]

\subsection{Demostración 3}\label{eqn:demostracion_3}

\[(\lambda*A)*=\compconj{\lambda}*A^{*}\]

\[[(\lambda * A)^{*}]_{j,k}=[\compconj{((\lambda *  A)^{\top})}]_{j,k}=\compconj{[(\lambda *  A)^{\top}]_{j,k}}=\compconj{[\lambda *  A]_{k,j}}=\compconj{\lambda * [A]_{k,j}}=\compconj{\lambda} *  \compconj{[A]_{k,j}}=\]

\[=\compconj{\lambda} *  \compconj{[A^{\top}]_{j,k}}=\compconj{\lambda} *  [\compconj{(A^{\top})}]_{j,k}=\compconj{\lambda} *  [A^*]_{j,k}=[\compconj{\lambda} * A^*]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 4}\label{eqn:demostracion_4}

\[(A^{*})^{*}=A\]

\[[(A^{*})^{*}]_{j,k}=[(\compconj{((\compconj{A})^{\top}})^{\top}]_{j,k}=[\compconj{(\compconj{A})^{\top}}]_{k,j}=[(\compconj{\compconj{A}})^{\top}]_{k,j}=[\compconj{\compconj{A}}]_{j,k}=[A]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 5}\label{eqn:demostracion_5}

\[[A^{-1}]^{*}=[A^{*}]^{-1}\]

\[[(A^{-1})^{*}]_{j,k}=[\compconj{(A^{-1})^{\top}}]_{j,k}=[(\compconj{A^{-1}})^{\top}]_{j,k}=[(\compconj{A^{-1}})]_{k,j}=[(\compconj{A})^{-1}]_{k,j}=[((\compconj{A})^{-1})^{\top}]_{j,k}=\]

\[=[((\compconj{A})^{\top})^{-1}]_{j,k}=[(A^{*})^{-1}]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\end{appendices}


\end{document}
  • 1
    I think you need to use a package like hyperref for that. – remco Apr 18 '18 at 14:51
  • 2
    Please don't post code fragments. Instead, put your fragments into a complete compilable document that shows the problem. In this case, as @remco mentioned, is you probably aren't loading hyperref – erik Apr 18 '18 at 15:00
  • 1
    Off - Topic: The usage of numbers in labels is discouraged -- as soon as the order of the labeled entities changes the numbers do not match and it is easily forgotten to change the \ref{....} occurences as well. Don't do this! –  Apr 18 '18 at 18:15
  • see if \setsecnumdepth{subsubsection} in preamble helps. i cant test since you not provide complete but small document. so we haven't any clue, what is your document class ... – Zarko Apr 18 '18 at 19:23
  • @Zarko: \setsecnumdepth is a memoir macro, if I remember correctly. –  Apr 18 '18 at 19:30
  • @ChristianHupfer, yes, it is. this is pure guessing, document class of the op document is unknown ... – Zarko Apr 18 '18 at 19:44
  • @Zarko: The idea however is good, but if I remember correctly, hyperref supports linking anchors even if the section etc. isn't numbered. The O.P. seems to use the appendix package. –  Apr 18 '18 at 19:46
  • I have added the code, when I try to add the package hyperref it does not load. Sorry because the content is in Spanish – Miguel Sanz Narrillos Apr 19 '18 at 08:33
  • @MiguelSanzNarrillos: The problems with hyperref are caused by the appendix package here. I 'solved' your problem, but I don't address typographical issues with wrong usages of \[...\] etc. –  Apr 19 '18 at 10:04

1 Answers1

2

The main cause is not using hyperref, however this will lead to problems with \Hy@chapname being defined to expand as Apéndice, the accented character means trouble.

Using another name as done here with \usebetterlinkanchor cures the problem. (See Appendix TOC link does not work when using Polyglossia (TeX Live 2015))

\documentclass{article}
%\usepackage{afour25}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[ddmmyyyy]{datetime}
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage[utf8]{inputenc}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{graphicx}
\usepackage{listings}
%\usepackage{titlesec}
\usepackage[toc,page]{appendix}
\usepackage[unicode]{hyperref}


\makeatletter
\newcommand{\usebetterlinkanchor}[1]{%
  \gdef\Hy@chapapp{#1}%
}
\makeatother

\newcommand{\compconj}[1]{%
  \overline{#1}
}

\setcounter{section}{-1}

\pagestyle{fancy}
\fancyhf{}
\rhead{Miguel Sanz Narrillos}
\lhead{Apuntes procesamiento de señales aleatorias}
%\cfoot{Page \thepage\ of \pageref{LastPage}}
\cfoot{\thepage}
\title{Apuntes procesamiento de señales aleatorias}
\author{Miguel Sanz Narrillos}
\date{\today}


\begin{document}

\maketitle

\section{ Preliminares}

\subsection{ Algo sobre álgebra lineal}


\subsubsection{Definición matriz transpuesta conjugada}

La transpuesta conjugada de una matriz $A \in \mathbb{C}^{m*n}$ se define como:
\[A^*:=\compconj{(A^{\top})}=(\compconj{A})^{\top} \in \mathbb{C}^{m*n}\]

Esta matriz transpuesta conjugada tiene las siguientes propiedades:
\begin{enumerate}
    \item $(A+B)^*=A^* +B^*$ teniendo  $\forall A,B\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_1}
    \item $(A B)^*=B^* A^*$ teniendo $\forall A\in \mathbb{C}^{m*n}$ y  $\forall B\in \mathbb{C}^{n*p}$, demostración en: \ref{eqn:demostracion_2}
    \item $(\lambda A)^*=\compconj{\lambda} A^*$ teniendo $ \forall A\in \mathbb{C}^{m*n}$ y $\forall \lambda\in \mathbb{C}$, demostración en:  \ref{eqn:demostracion_3}
    \item $(A^*)^*=A$ teniendo $\forall A\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_4}
    \item $(A^{-1})^*=(A^*)^{-1}$ teniendo $ \forall A\in \mathbb{C}^{m*n}$, demostración en: \ref{eqn:demostracion_5}
\end{enumerate}


\subsection{Observaciones}
\begin{itemize}
    \item Todas las propiedades de las matrices reales con las operaciones del álgebra lineal para el caso real siguen siendo ciertas en el caso complejo, con demostraciones idénticas porque solo usan la estructura de cuerpo $\mathbb{R}$ y $\mathbb{C}$ también lo es.
\end{itemize}



\begin{appendices}
\usebetterlinkanchor{appendixchapters}
\section{Demostraciones:}
\subsection{Demostración 1}\label{eqn:demostracion_1}

\[(A+B)^{*}=A^{*}+B^{*}\]

\[[(A+B)^{*}]_{j,k}=[(\compconj{(A+B)})^{\top}]_{j,k}=\compconj{[(A+B)^{\top}]_{j,k}}=\compconj{[A+B]_{k,j}}=\compconj{[A]_{k,j}}+\compconj{[B]_{k,j}}=\]

\[=\compconj{[A^{\top}]_{j,k}}+\compconj{[B^{\top}]_{j,k}}=[A^{*}]_{j,k}+[B^{*}]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 2}\label{eqn:demostracion_2}

\[(A*B)^{*}=B^{*}*A^{*}\]

\[[(A*B)^{*}]_{j,k}=[\compconj{(A*B)^{\top}}]_{j,k}=[\compconj{(A*B)]_{j,k}^{\top}}=[\compconj{(A*B)]_{k,j}}=[\compconj{A}]_{k,p}*[\compconj{B}]_{p,j}=\]

\[=[\compconj{B^{\top}}]_{j,p}*[\compconj{A^{\top}}]_{p,k}=[B^{*}]_{j,p}*[A^{*}]_{p,k}\]

\[\forall A \in \mathbb{C}^{m*p}\]
\[\forall B \in \mathbb{C}^{p*n}\]

\subsection{Demostración 3}\label{eqn:demostracion_3}



\[(\lambda*A)*=\compconj{\lambda}*A^{*}\]

\[[(\lambda * A)^{*}]_{j,k}=[\compconj{((\lambda *  A)^{\top})}]_{j,k}=\compconj{[(\lambda *  A)^{\top}]_{j,k}}=\compconj{[\lambda *  A]_{k,j}}=\compconj{\lambda * [A]_{k,j}}=\compconj{\lambda} *  \compconj{[A]_{k,j}}=\]

\[=\compconj{\lambda} *  \compconj{[A^{\top}]_{j,k}}=\compconj{\lambda} *  [\compconj{(A^{\top})}]_{j,k}=\compconj{\lambda} *  [A^*]_{j,k}=[\compconj{\lambda} * A^*]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 4}\label{eqn:demostracion_4}

\[(A^{*})^{*}=A\]

\[[(A^{*})^{*}]_{j,k}=[(\compconj{((\compconj{A})^{\top}})^{\top}]_{j,k}=[\compconj{(\compconj{A})^{\top}}]_{k,j}=[(\compconj{\compconj{A}})^{\top}]_{k,j}=[\compconj{\compconj{A}}]_{j,k}=[A]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\subsection{Demostración 5}\label{eqn:demostracion_5}

\[[A^{-1}]^{*}=[A^{*}]^{-1}\]

\[[(A^{-1})^{*}]_{j,k}=[\compconj{(A^{-1})^{\top}}]_{j,k}=[(\compconj{A^{-1}})^{\top}]_{j,k}=[(\compconj{A^{-1}})]_{k,j}=[(\compconj{A})^{-1}]_{k,j}=[((\compconj{A})^{-1})^{\top}]_{j,k}=\]

\[=[((\compconj{A})^{\top})^{-1}]_{j,k}=[(A^{*})^{-1}]_{j,k}\]

\[\forall A \in \mathbb{C}^{m*n}\]

\end{appendices}

\end{document}