I am writing my 2nd TeX document. Therefore I am still at the beginning. I have a chapter inside my Appendix, which is dealing with small derivations. However, I am not quite sure if my layout/form is correct.
Based on one comment of this post I avoid the use of \Leftrightarrow
Here is a short MWE of one derivation.
\documentclass[a4paper,12pt]{scrartcl}
\usepackage[ngerman]{babel}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{aligned-overset}
\newcommand{\Lagr}{\mathcal{L}}
\newcommand{\matr}[1]{\mathbf{#1}}
\newcommand{\X}{\matr{X}} %Matrix von X
\newcommand{\y}{\matr{y}} %y als voller Vektor
\newcommand{\yct}{\ubar{\y}^\mathbf{T}} %Zentriert
\newcommand{\betahat}{\hat{\beta}} %betahat
\begin{document}
\begin{flalign*}
\Lagr(\beta_{0},\beta) &=\min\limits_{\beta_{0}, \beta} \left\{ \frac{1}{2} \sum_{i=1}^N\left(y_{i}-\beta_{0} - \sum_{j=1}^p\beta_{j}\tilde{x}_{ij}\right)^2 +\lambda\sum_{j=1}^p\left|\beta_{j}\right| \right\} &\\
&= \min\limits_{\beta_{0}, \beta} \left\{ \frac{1}{2} \sum_{i=1}^N\left(y_{i}-\beta_{0} - \sum_{j=1}^p\beta_{j}(x_{ij}-\bar{x}_{j})\right)^2 +\lambda\sum_{j=1}^p\left|\beta_{j}\right| \right\} &
\end{flalign*}
\vspace*{-1cm}
\begin{flalign*}
&\frac{\partial \Lagr}{\partial \beta_{0}} \overset{!}{=}0 \\
&-\sum_{i=1}^N\left(y_{i}-\betahat_{0} - \sum_{j=1}^p\betahat_{j}(x_{ij}-\bar{x}_{j})\right) = 0 \\
& -\sum_{i=1}^{N}y_i + N \betahat_{0}+\sum_{i=1}^N\left(\sum_{j=1}^p\betahat_{j}x_{ij}\right) - N\sum_{j=1}^{p}\betahat_{j}\bar{x}_{j} =0 \\
& -\frac{1}{N}\sum_{i=1}^{N}y_i +\betahat_{0}+ \sum_{j=1}^p\left(\betahat_{j}\frac{1}{N}\sum_{i=1}^N x_{ij} \right) - \sum_{j=1}^p\betahat_{j}\bar{x}_{j}=0 \\
& -\bar{y}+\betahat_{0}+\sum_{j=1}^p\betahat_{j}\bar{x}_{j}-\sum_{j=1}^p\betahat_{j}\bar{x}_{j}=0\\
& \betahat_{0} =\bar{y}\\
\intertext{\textnormal{Aus der Annahme, dass $\y$ zentriert ist $\frac{1}{N}\sum_{i=1}^{N}\tilde{y}_{i}=0$, folgt}}
&\betahat_{0}=0 &
\end{flalign*}
\end{document}
The code can certainly be written more elegantly, but I am primarily interested in the optical layout of the derivation. I would be very grateful for help and tips.
