One could argue that this does not fit the OP's description, but since the symbol is non-standard, one can sort of have some flexibility in defining it.
\documentclass{article}
\usepackage{stackengine,mathtools}
\stackMath
\newcommand\ssqrt[2][\relax]{%
\ifx\relax#1\relax%
\stackengine{0pt}{\sqrt{\phantom{#2}}}{\mkern3mu\sqrt{#2}}{O}{c}{F}{F}{L}%
\else%
\stackengine{0pt}{\sqrt[#1]{\phantom{#2}}}{\mkern3mu\sqrt[\phantom{#1}]{#2}}{O}{c}{F}{F}{L}%
\fi%
}
\begin{document}
\[
\ssqrt{z}\quad\ssqrt[n]{z}
\]
\[
\ssqrt{\frac{x}{y}}\quad\ssqrt[3]{\frac{x}{y}}
\]
\end{document}

For something more sophisticated, certainly not perfect, and the dimensions of the macro dependent on the font and fontsize,
\documentclass{article}
\usepackage{stackengine,mathtools,trimclip,scalerel}
\stackMath
\newcommand\ssqrt[2][\relax]{\ThisStyle{%
\ifx\relax#1\relax%
\setbox0=\hbox{$\SavedStyle\sqrt{\phantom{\cramped{#2}}}$}%
\def\tmpwd{\dimexpr2.5pt + .18\ht0\relax}% FONT DEPENDENT
\stackengine{0pt}{%
\SavedStyle\mkern1.5mu\sqrt{#2}%
}{%
\kern\tmpwd\clipbox{\tmpwd{} 2pt 0pt 0pt}{\copy0}%
}{O}{l}{F}{F}{L}%
\else%
\setbox0=\hbox{$\SavedStyle\sqrt[\phantom{#1}]{\phantom{\cramped{#2}}}$}%
\setbox2=\hbox{$\scriptscriptstyle#1$}%
\def\tmpwd{\dimexpr+3.2pt +.5\wd2 + .08\ht0\relax}% FONT DEPENDENT
\stackengine{0pt}{%
\SavedStyle\mkern1.5mu\sqrt[#1]{#2}%
}{%
\kern\tmpwd\clipbox{\tmpwd{} 0pt 0pt 0pt}{\copy0}%
}{O}{l}{F}{F}{L}%
\fi%
}}
\begin{document}
\[
\ssqrt{z}\quad\ssqrt[3]{z}\quad\ssqrt[n]{z^2 + 37}
\]
\[
\ssqrt{\frac{x}{y}}\quad\ssqrt[3]{\frac{x}{y}}\quad\ssqrt[n]{\frac{x^2 + 37}{y}}
\]
\[\textstyle
\ssqrt{z}\quad\ssqrt[3]{z}\quad\ssqrt[n]{z^2 + 37}
\]
\[\textstyle
\ssqrt{\frac{x}{y}}\quad\ssqrt[3]{\frac{x}{y}}\quad\ssqrt[n]{\frac{x^2 + 37}{y}}
\]
\[\scriptstyle
\ssqrt{z}\quad\ssqrt[3]{z}\quad\ssqrt[n]{z^2 + 37}
\]
\[\scriptstyle
\ssqrt{\frac{x}{y}}\quad\ssqrt[3]{\frac{x}{y}}\quad\ssqrt[n]{\frac{x^2 + 37}{y}}
\]
\end{document}
