Compare the output of
\documentclass[11pt, a4paper]{report}
\usepackage{amsmath}
\usepackage{enumitem}
\usepackage{commath}
\DeclareMathOperator{\Tr}{Tr}
\begin{document}
Let $h$ be a linear mapping of $V_1$ into $V_2$. Let
\[
h^0 = \frac{1}{\abs G} \sum_{t\in G} (\rho_t^2)^{-1} h \rho_t^1
\]
where $\abs G$ is the order of $G$. Then
\begin{enumerate}[label=(\roman*)]
\item If $\rho^1$ and $\rho^2$ are not isomorphic then we have $h^0=0$
\item If $V_1 = V_2$ and $\rho^1 = \rho^2$, $h^0$ is a scalar multiple of the identity,
the scalar being $\frac{1}{n} \Tr(h)$ where $n = \dim(V_1)$
\end{enumerate}
\end{document}

with the output of
\documentclass[11pt, a4paper]{report}
\usepackage{amsmath}
\usepackage{enumitem}
\makeatletter
% begin definitions for a "better commath"
\newcommand{\dif}{\mathop{}\!\mathrm{d}}
\newcommand{\Dif}{\mathop{}\!\mathrm{D}}
\newcommand{\spx}[1]{%
\if\relax\detokenize{#1}\relax
\expandafter\@gobble
\else
\expandafter\@firstofone
\fi
{^{#1}}%
}
\newcommand\pd[3][]{\frac{\partial\spx{#1}#2}{\partial#3\spx{#1}}}
\newcommand\tpd[3][]{\tfrac{\partial\spx{#1}#2}{\partial#3\spx{#1}}}
\newcommand\dpd[3][]{\dfrac{\partial\spx{#1}#2}{\partial#3\spx{#1}}}
\newcommand{\md}[6]{\frac{\partial\spx{#2}#1}{\partial#3\spx{#4}\partial#5\spx{#6}}}
\newcommand{\tmd}[6]{\tfrac{\partial\spx{#2}#1}{\partial#3\spx{#4}\partial#5\spx{#6}}}
\newcommand{\dmd}[6]{\dfrac{\partial\spx{#2}#1}{\partial#3\spx{#4}\partial#5\spx{#6}}}
\newcommand{\od}[3][]{\frac{\dif\spx{#1}#2}{\dif#3\spx{#1}}}
\newcommand{\tod}[3][]{\tfrac{\dif\spx{#1}#2}{\dif#3\spx{#1}}}
\newcommand{\dod}[3][]{\dfrac{\dif\spx{#1}#2}{\dif#3\spx{#1}}}
\newcommand{\genericdel}[4]{%
\ifcase#3\relax
\ifx#1.\else#1\fi#4\ifx#2.\else#2\fi\or
\bigl#1#4\bigr#2\or
\Bigl#1#4\Bigr#2\or
\biggl#1#4\biggr#2\or
\Biggl#1#4\Biggr#2\else
\left#1#4\right#2\fi
}
\newcommand{\del}[2][-1]{\genericdel(){#1}{#2}}
\newcommand{\set}[2][-1]{\genericdel\{\}{#1}{#2}}
\let\cbr\set
\newcommand{\sbr}[2][-1]{\genericdel[]{#1}{#2}}
\let\intoo\del
\let\intcc\sbr
\newcommand{\intoc}[2][-1]{\genericdel(]{#1}{#2}}
\newcommand{\intco}[2][-1]{\genericdel[){#1}{#2}}
\newcommand{\eval}[2][-1]{\genericdel.|{#1}{#2}}
\newcommand{\envert}[2][-1]{\genericdel||{#1}{#2}}
\let\abs\envert
\newcommand{\sVert}[1][0]{%
\ifcase#1\relax
\rvert\or\bigr|\or\Bigr|\or\biggr|\or\Biggr
\fi
}
\newcommand{\enVert}[2][-1]{\genericdel\|\|{#1}{#2}}
\let\norm\enVert
\newcommand{\fullfunction}[5]{%
\begin{array}{@{}r@{}r@{}c@{}l@{}}
#1 \colon & #2 & {}\longrightarrow{} & #3 \\
& #4 & {}\longmapsto{} & #5
\end{array}
}
%%% end of the definitions
\makeatother
\DeclareMathOperator{\Tr}{Tr}
\begin{document}
Let $h$ be a linear mapping of $V_1$ into $V_2$. Let
\[
h^0 = \frac{1}{\abs G} \sum_{t\in G} (\rho_t^2)^{-1} h \rho_t^1
\]
where $\abs G$ is the order of $G$. Then
\begin{enumerate}[label=(\roman*)]
\item If $\rho^1$ and $\rho^2$ are not isomorphic then we have $h^0=0$
\item If $V_1 = V_2$ and $\rho^1 = \rho^2$, $h^0$ is a scalar multiple of the identity,
the scalar being $\frac{1}{n} \Tr(h)$ where $n = \dim(V_1)$
\end{enumerate}
\end{document}
The code has already been presented in https://tex.stackexchange.com/a/135985/4427 and provides a full replacement of commath, avoiding all its weaknesses. If you're tied to commath because you use its macros and features in other places, this can save you. Otherwise define \abs with \DeclarePairedDelimiter as suggested by Mico.
For instance, you can notice the reduced space between “where” and “|G|” in the commath version.

You should define anyway an operator name for “Tr”.
If you decide to go for this, save the part between
% begin definitions for a "better commath"
and
% end of the definitions
in a file called bettercommath.sty in the working directory and do \usepackage{bettercommath}.
\,\abs G. – Apr 09 '19 at 11:40commath. – campa Apr 09 '19 at 11:52\frac{1}{|G|}does not experience the same problem. – Steven B. Segletes Apr 09 '19 at 11:58commathmacros. – egreg Apr 09 '19 at 12:50