So I was trying to improve the readability of my paper and was wondering if there is any way to make the following look slightly more appealing.
Is it possible to have the sum sign with substack bigger and span over multiple math lines, some thing like

For reference, the code I have is
\begin{equation}\label{e.main_bound_Q2}
\begin{split}
\mathbb{II}_1:=\sum_{\substack{|\alpha'|+|\alpha''|\leq|\alpha|\\|\beta'|+|\beta''|\leq|\beta|\\|\sigma'|+|\sigma''|\leq|\sigma|\\|\alpha'|+|\beta'|+|\sigma'|\leq 6}}&\mathds{1}_{\gamma+2s\in \left(0,\frac{1}{2}\right)}\int_0^{T}(1+t)^{1+\delta}\norm{(1+t)^{-\frac{1+\delta}{2}}\jap{x-(t+1)v}^2\jap{v}\derv{''}{''}{''} g}_{L^2_xL^2_v}\\
&\times \norm{\derv{'}{'}{'} g}_{L^\infty_xH^{\frac{1}{2}-\delta}_v}\norm{(1+t)^{-\frac{1+\delta}{2}}\jap{x-(t+1)v}^2\jap{v}\der g}_{L^2_xL^2_v}\d t\\
\quad+\sum_{\substack{|\alpha'|+|\alpha''|\leq|\alpha|\\|\beta'|+|\beta''|\leq|\beta|\\|\sigma'|+|\sigma''|\leq|\sigma|\\|\alpha'|+|\beta'|+|\sigma'|\geq 7}}&\mathds{1}_{\gamma+2s\in \left(0,\frac{1}{2}\right)}\int_0^{T}(1+t)^{1+2\delta}\norm{(1+t)^{-\frac{1+2\delta}{2}}\jap{x-(t+1)v}^2\jap{v}\derv{''}{''}{''} g}_{L^\infty_xL^{\infty}_v}\\
&\qquad\times \norm{\derv{'}{'}{'} g}_{L^2_xL^1_v}^{\frac{2(\gamma+2s-2)}{3}+2}\norm{\derv{'}{'}{'} g}_{L^2_xL^2_v}^{-\frac{2(\gamma+2s-2)}{3}-1}\\
&\qquad\times \norm{(1+t)^{-\frac{1+2\delta}{2}}\jap{x-(t+1)v}^2\jap{v}\der g}_{L^2_xL^2_v}\d t,
\end{split}
\end{equation}


