I want to illustrate a transformation from $xy$ to $uv$ plane. but I don't know how to link these planes. This is supposed to be the $xy$ plane
\begin{document}
\begin{figure}
\centering
\begin{tikzpicture}[vect/.style={->,shorten >=2pt,>=latex'}] \tkzInit[xmin=-.5, xmax=3, ymin=-.5, ymax=3.5]
\tkzDrawXY[noticks,label={}]
\tkzDefPoints{1/1/A, 0/2/B, 1/3/C, 2/2/D} \tkzDrawPoints(A,B,C,D)
\tkzLabelPoint[left](B){$B$}
\tkzLabelPoint[below](A){$A$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[right](D){$D$}
\tkzDrawSegments(A,B B,C C,D A,D)
\end{tikzpicture}
\end{figure}
\end{document}
and the now the $uv$ plane
\begin{document}
\begin{figure}[h]
\centering
\begin{tikzpicture}[vect/.style={->,shorten >=2pt,>=latex'}]
\tkzInit[xmin=-3.5, xmax=3, ymin=-1, ymax=2.5]
\tkzDrawXY[noticks,label={}]
\tkzDefPoints{1/1/A, 0/2/B, 1/3/C, 2/2/D, -1/-1/E, 0/0/F, -1/1/G, -2/0/H}
\tkzDrawPoints(A,B,C,D,E,F,G,H)
\tkzLabelPoint[left](B){$B$}
\tkzLabelPoint[below](A){$A$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[right](D){$D$}
\tkzDrawSegments[dashed](A,B B,C C,D A,D)
\tkzLabelPoint[below right](F){$B'$}
\tkzLabelPoint[below](E){$A'$}
\tkzLabelPoint[above](G){$C'$}
\tkzLabelPoint[below left](H){$D'$}
\tkzDrawSegments(E,F F,G G,H H,E)
\end{tikzpicture}
\end{figure}
\end{document}
How to put an arrow between them with the label $T(z)$?

\scopeandlocal bounding box. where can I find more information about it? – Marcos Paulo May 21 '20 at 06:29local bounding boxkey can be found on p. 1141 of pgfmanual v3.1.5, and the scopes are explained in section 12.3 Using Scopes to Structure a Picture of the same manual. – May 21 '20 at 06:31local bounding boxes norscopes in detail. – May 21 '20 at 06:46