The book has a lot of beautiful vector diagrams like these.
I think pulling this off in TikZ is difficult so I was wondering whether TikZ was used, or some other software.
I think that all of these figures can be produced with pgfplots. The histograms can be produces along the lines of this post, and the surfaces as parametric plots. Here is one example.
\documentclass[tikz,border=3mm]{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{colormaps}
\pgfplotsset{compat=1.17}
\begin{document}
\begin{tikzpicture}
\begin{axis}[hide axis,view={50}{15},unit vector ratio=1 1 1,
colormap/viridis,
declare function={R(\u)=0.5+\u/360;rr(\u)=0.05+\u/1080;
torusx(\u,\v)=cos(\u)*(R(\u) + rr(\u)*cos(\v));
torusy(\u,\v)=(R(\u) + rr(\u)*cos(\v))*sin(-1*\u);
torusz(\u,\v)=rr(\u)*sin(\v);}]
\addplot3[surf,point meta=rawx,%shader=interp,
domain=0:720,domain y=0:360,samples=36,
z buffer=sort]
({torusx(x,y)},{torusy(x,y)},{torusz(x,y)-3*rr(x)});
\end{axis}
\end{tikzpicture}
\end{document}
Or
\documentclass[tikz,border=3mm]{standalone}
\usepackage{pgfplots}
%\usepgfplotslibrary{colormaps}
\pgfplotsset{compat=1.17}
\begin{document}
\begin{tikzpicture}
\begin{axis}[hide axis,view={50}{15},unit vector ratio=1 1 1,
colormap/viridis,
declare function={R(\u)=0.5+\u/360;rr(\u)=0.05+\u/1080;
torusx(\u,\v)=cos(\u)*(R(\u) + rr(\u)*cos(\v));
torusy(\u,\v)=(R(\u) + rr(\u)*cos(\v))*sin(-1*\u);
torusz(\u,\v)=rr(\u)*sin(\v);}]
\addplot3[surf,point meta=u,variable=u,variable y=v,%shader=interp,
domain=0:720,domain y=0:360,samples=36,
z buffer=sort]
({torusx(u,v)},{torusy(u,v)},{torusz(u,v)-3*rr(u)});
\end{axis}
\end{tikzpicture}
\end{document}
pgfplots. – Jun 07 '20 at 04:53