0

I am trying to put different minipages (boxes) of different length and height to fit the empty spaces best, however I have no idea how to solve the problem:

Here's my code and here's what I want to do:

enter image description here

I know the MWE might not be the best but I have no clue how to get this done, thanks so much for your help!


\begin{minipage}[t]{0.33\textwidth} $\bm{a=a(t) \rightarrow }$\textbf{2x integrieren}\ $a(t) =\dfrac{dv}{dt} \rightarrow v(t) = v_0 + \int_{t_0}^{t} a(\bar{t}) \cdot d\bar{t}$\ $v(t) = \dfrac{dx}{dt} \rightarrow x(t) = x_0 + \int_{t_0}^{t} v(\bar{t}) \cdot d\bar{t}$ \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} $\bm{a=a(v) \rightarrow }$\textbf{1x integrieren}\ dt =$\dfrac{dv}{dt} \rightarrow \int_{t_0}^{t} d(\bar{t}) = \int_{t_0}^{t} \dfrac{d\bar{v}}{a(v)}\ t = t_0 + \int_{v_0}^{v} \dfrac{d\bar{v}}{a(v)} = f(v)$\ Umk.funktion: $t=f(v) \rightarrow v=F(t)$\ $x(t) = x_0 +\int_{t0}^{t}F(\bar{t}) \cdot d\bar{t}$ \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} $\bm{a=a(x)} \rightarrow \dfrac{dv}{dt} = \dfrac{dv}{dx} \cdot \dfrac{dx}{dt}\ a(x)\cdot dx = dv \cdot v\ v(x)= \sqrt{v_0^2+2\cdot \int_{x_0}^{x} a(\bar{x}) \cdot d\bar{x}}\ t=t_0 + \int_{x_0}^{x}\dfrac{d\hat{x}}{\sqrt{v_0^2+2 \cdot \int_{x_0}^{\hat{x}} a({\bar{x}} d\bar{x}}}$\ Umk.funktion: $t=f(x) \rightarrow x=f(t)$ \end{minipage}

\begin{minipage}[t]{0.33\textwidth} $\bm{a=a(t) \rightarrow }$\textbf{2x integrieren}\ $a(t) =\dfrac{dv}{dt} \rightarrow v(t) = v_0 + \int_{t_0}^{t} a(\bar{t}) \cdot d\bar{t}$\ $v(t) = \dfrac{dx}{dt} \rightarrow x(t) = x_0 + \int_{t_0}^{t} v(\bar{t}) \cdot d\bar{t}$ \end{minipage}

\hspace{7.5cm} \begin{minipage}[t]{0.3\textwidth} $\bm{a=a(v) \rightarrow }$\textbf{1x integrieren}\ dt =$\dfrac{dv}{dt} \rightarrow \int_{t_0}^{t} d(\bar{t}) = \int_{t_0}^{t} \dfrac{d\bar{v}}{a(v)}\ t = t_0 + \int_{v_0}^{v} \dfrac{d\bar{v}}{a(v)} = f(v)$\ Umk.funktion: $t=f(v) \rightarrow v=F(t)$\ $x(t) = x_0 +\int_{t0}^{t}F(\bar{t}) \cdot d\bar{t}$ \end{minipage}

\end{document}

Sebastiano
  • 54,118

0 Answers0