I am using the Trace Determinant Diagram provided in this answer.
Note that each phase portrait is created as follows,
\newinlay\saddle{saddle}%
{\begin{tikzpicture}[scale=\inlayscale]
\foreach \sx in {+,-}
{\draw[flow] (\sx4,0) -- (0,0);
\draw[flow] (0,0) -- (0,\sx4);
\foreach \sy in {+,-}
\foreach \a/\b/\c/\d in {2.8/0.3/0.7/0.6,3.9/0.4/1.3/1.1}
\draw[flow] (\sx\a,\sy\b)
.. controls (\sx\c,\sy\d) and (\sx\d,\sy\c)
.. (\sx\b,\sy\a);
}
The complete code is
% Poincaré Diagram: Classification of Phase Portaits in the (det A,Tr A)-plane
% Author: Gernot Salzer
% Based on a drawing by Douglas R. Hundley, people.whitman.edu/~hundledr/courses/M244/Poincare.pdf
\documentclass[border=1mm]{standalone}
\usepackage{tikz}
\usetikzlibrary{decorations.markings,arrows}
\tikzset
{every pin/.style={pin edge={<-}}
,>=stealth
,flow/.style=
{decoration=
{markings
,mark=at position #1 with {\arrow{>}}
}
,postaction={decorate}
}
,flow/.default=0.5
}
\newcommand\inlayscale{}
\newcommand\inlaycaption[1]{{\sffamily\scriptsize#1}}
\newcommand\newinlay[4][0.18]%
{\renewcommand\inlayscale{#1}%
\newsavebox#2%
\savebox#2%
{\begin{tabular}{@{}c@{}}
#4\[-1ex]
\inlaycaption{#3}\[-1ex]
\end{tabular}%
}%
}
\newcommand\inlay[1]{\usebox{#1}}
\newcommand\Tr{\mathop{\mathrm{Tr}}}
\newinlay\saddle{saddle}%
{\begin{tikzpicture}[scale=\inlayscale]
\foreach \sx in {+,-}
{\draw[flow] (\sx4,0) -- (0,0);
\draw[flow] (0,0) -- (0,\sx4);
\foreach \sy in {+,-}
\foreach \a/\b/\c/\d in {2.8/0.3/0.7/0.6,3.9/0.4/1.3/1.1}
\draw[flow] (\sx\a,\sy\b)
.. controls (\sx\c,\sy\d) and (\sx\d,\sy\c)
.. (\sx\b,\sy\a);
}
\end{tikzpicture}%
}
\newinlay\sink{sink}%
{\begin{tikzpicture}[scale=\inlayscale]
\foreach \sx in {+,-}
{\draw[flow] (\sx4,0) -- (0,0);
\draw[flow] (0,\sx4) -- (0,0);
\foreach \sy in {+,-}
\foreach \a/\b in {2/1,3/0.44}
\draw[flow,domain=\sx\a:0] plot (\x, {\sy\b\x\x});
}
\end{tikzpicture}%
}
\newinlay\source{source}%
{\begin{tikzpicture}[scale=\inlayscale]
\foreach \sx in {+,-}
{\draw[flow] (0,0) -- (\sx4,0);
\draw[flow] (0,0) -- (0,\sx4);
\foreach \sy in {+,-}
\foreach \a/\b in {2/1,3/0.44}
\draw[flow,domain=0:\sx\a] plot (\x, {\sy\b\x\x});
}
\end{tikzpicture}%
}
\newinlay\stablefp{line of stable fixed points}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (-4,0) -- (4,0);
\foreach \s in {+,-}
{\draw[flow] (0,\s4) -- (0,0);
\foreach \x in {-3,-2,-1,1,2,3}
\draw[flow] (\x,\s3) -- (\x,0);
}
\end{tikzpicture}%
}
\newinlay\unstablefp{line of unstable fixed points}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (-4,0) -- (4,0);
\foreach \s in {+,-}
{\draw[flow] (0,0) -- (0,\s4);
\foreach \x in {-3,-2,-1,1,2,3}
\draw[flow] (\x,0) -- (\x,\s3);
}
\end{tikzpicture}%
}
\newinlay\spiralsink{spiral sink}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (-4,0) -- (4,0);
\draw (0,-4) -- (0,4);
\draw[samples=100,smooth,domain=27:7] plot ({\x r}: {0.005\x\x});
\draw[->] ({26 r}: {0.0052626}) -- +(0.01,-0.01);
\end{tikzpicture}%
}
\newinlay\spiralsource{spiral source}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (-4,0) -- (4,0);
\draw (0,-4) -- (0,4);
\draw [samples=100,smooth,domain=10:28] plot ({-\x r}: {0.005\x\x});
\draw[<-] ({-27.5 r}: {0.00527.527.5}) -- +(0.01,-0.008);
\end{tikzpicture}%
}
\newinlay[0.15]\centre{center}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (-4,0) -- (4,0);
\draw (0,-4) -- (0,4);
\foreach \r in {1,2,3} \draw[flow=0.63] (\r,0) arc (0:-360:\r cm);
\end{tikzpicture}%
}
\newinlay\degensink{degenerate sink}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (0,-4) -- (0,4);
\draw[flow] (-4,0) -- (0,0);
\draw[flow] (4,0) -- (0,0);
\draw[flow] (-3.5,3.5) .. controls (4,1.5) and (4,1).. (0,0);
\draw[flow] (3.5,-3.5) .. controls (-4,-1.5) and (-4,-1) .. (0,0);
\draw[flow] (-3.5,2.5) .. controls (2,1) and (2,0.8).. (0,0);
\draw[flow] (3.5,-2.5) .. controls (-2,-1) and (-2,-0.8) .. (0,0);
\end{tikzpicture}%
}
\newinlay\degensource{degenerate source}%
{\begin{tikzpicture}[scale=\inlayscale]
\draw (0,-4) -- (0,4);
\draw[flow] (0,0) -- (-4,0);
\draw[flow] (0,0) -- (4,0);
\draw[flow] (0,0) .. controls (4,1.5) and (4,1).. (-3.5,3.5);
\draw[flow] (0,0) .. controls (-4,-1.5) and (-4,-1) .. (3.5,-3.5);
\draw[flow] (0,0) .. controls (2,1) and (2,0.8).. (-3.5,2.5);
\draw[flow] (0,0) .. controls (-2,-1) and (-2,-0.8) .. (3.5,-2.5);
\end{tikzpicture}%
}
\begin{document}
\begin{tikzpicture}[line cap=round,line join=round]
% Main diagram
\draw[line width=1pt,->] (0,-0.3) -- (0, 4.7) coordinate (+y);
\draw[line width=1pt,->] (-5,0) -- ( 5,0) coordinate (+x);
\draw[line width=1pt, domain=-4:4] plot (\x, {0.25\x\x});
\node at (+y) [label={[above,yshift=0.8cm]%
{\sffamily\large Poincar'e Diagram: Classification of Phase Portaits
in the $(\det A,\Tr A)$-plane}}] {};
\node at (+x) [label={[right,yshift=-0.5ex]$\scriptstyle\Tr A$}] {};
\node at (+y) [label={[above]$\scriptstyle\det A$}] {};
\node at (-4,4) [pin={[above]$\scriptstyle\Delta=0$}] {};
\node at ( 4,4) [pin={[above,align=left]{%
$\scriptstyle\Delta=0$:\
$\scriptstyle\det A=\frac{1}{4}(\Tr A)^2$}}] {};
% inlays
\node at (0,-1.4) {\inlay\saddle};
\node at (0,1.2)
[pin={[draw,right,xshift=0.3cm]\inlay\centre}] {};
\node at (0,0)
[pin={[draw,above left,align=center,xshift=-0.3cm]%
\inlaycaption{uniform}\[-1ex]\inlaycaption{motion}}] {};
\node at (-4,1) {\inlay\sink};
\node at ( 4,1) {\inlay\source};
\node at (-3,0) [pin={[draw,below,yshift=-1cm]\inlay\stablefp}] {};
\node at (3,0) [pin={[draw,below,yshift=-1cm]\inlay\unstablefp}] {};
\node at (-1.8,3.7) {\inlay\spiralsink};
\node at ( 1.8,3.7) {\inlay\spiralsource};
\node at (-3.5,{0.253.53.5})
[pin={[draw,left,xshift=-1.15cm,yshift=-0.3cm]\inlay\degensink}] {};
\node at ( 3.5,{0.253.53.5})
[pin={[draw,right,xshift=0.9cm,yshift=-0.3cm]\inlay\degensource}] {};
\end{tikzpicture}
\end{document}
I tried to edit the code to create two other distinct phase portrait, but I couldn't quite understand the code.
I was trying to create, for example, this phase portrait,

I would like to understand the code and how to create these examples.

tikzpicture. This (sub) images are stored in save boxes and than used in main picture. What is your problem? compose such complex image or only how to draw desired phase diagrams as stand alone pictures? – Zarko Oct 29 '20 at 02:03