Hello how are you? I have an extensive document which is from my teacher and I need to make a list of equations as they are in the image. Being extensive I would like it to be something automatic, something easy to implement with \label{} or similar. (what they do here does not serve me) I do not know where to start but I do know that I want it to work when I change sections
This is my code
\documentclass[12pt,a4papper]{article}
\usepackage[T1]{fontenc}
\usepackage[spanish]{babel}
\usepackage{titlesec}
\titleformat{\section}[frame]
{\small}{\filcenter\small
\filleft UNIDAD \thesection \ }
{3pt}{\Large\bfseries\filcenter}
\usepackage[left=2.5cm,top=2cm,right=2.5cm,bottom=1.5cm]{geometry}
\usepackage{amsthm} %para usar \theoremstyle
\usepackage{xcolor}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{thmtools}
\declaretheoremstyle[
spaceabove=7pt, spacebelow=7pt,
headfont=\normalfont\bfseries,
notefont=\mdseries\bfseries\itshape, notebraces={(}{)},
bodyfont=\normalfont\itshape,
postheadspace=.5em, %
numberlike=section,
name=Teorema,
thmbox=M,
%shaded={bgcolor={rgb}{1,1,1}},
headformat=\NAME~\NUMBER \NOTE %
%qed=$\blacksquare$
]{Teorema}
\declaretheorem[style=Teorema]{teo}
\begin{document}
\section{Anexo}
\begin{teo}[Igualdad de las derivadas cruzadas o Clairaut] \label{Clairaut}
Sea $f: \Omega \rightarrow \mathbb{R}$ una función de dos variables definida en un conjunto abierto $\Omega \subseteq \mathbb{R}^{2}$, si existen las segundas derivadas cruzadas y son continuas en $\Omega$, esto es, $f \in \mathcal{C}^{2}(\Omega)$ entonces estas son iguales, es decir:
\begin{equation}\label{formula 1}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}.
\end{equation}
\end{teo}
\begin{teo}[Primer teorema fundamental del calculo]\label{ptfc}
Sea $f$ una función integrable en el intervalo $[a, b]$, definimos $F$ en $[a, b]$ como
\begin{equation}
F(x)=\int_{a}^{x} f(t) d t \label{formula 2}
\end{equation}
si $f$ es continua en $c \in(a, b)$, entonces $F$ es diferenciable en $c$ y $F^{\prime}(c)=f(c)
$
\end{teo}
\begin{teo}[Regla de Barrow] \label{barrow}
Si $f$ es continua en $[a, b]$ y $f=g^{\prime}$ para alguna función $g$ entonces
\begin{equation}
\int_{a}^{b} f(t) d t=g(b)-g(a) \label{formula 3}
\end{equation}
\end{teo}
\end{document}
Thank you so much.
