53

Halloween makes me remember our dear friend GuM, who passed away this year in January. I was thinking of a way to celebrate him.

I would like to ask you to show us something written with his probably most famous package, halloweenmath.

It would be great to see something actually used. In particular, in documents for your students, if you are teachers. I'm sure GuM would be happy to know his package is employed for that purpose.

P.S. = The reputation I earned with this question (when it is/was not community wiki) has been converted into a bounty for the best answer.

CarLaTeX
  • 62,716

8 Answers8

26

My thought for you special user GuM....done with Mathcha Editor: https://www.mathcha.io/editor

I know very well that you are always with us... until the end of the times. With sincere affection...Sebastiano.

enter image description here

\documentclass{article}
\usepackage{halloweenmath}
\usepackage{tikz}
\usetikzlibrary{patterns}
\begin{document}
\tikzset {_z38859iak/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformscale{1 }  }}}
\pgfdeclareradialshading{_9dejk45sk}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(0.95,0.91,0.4);
rgb(0bp)=(0.95,0.91,0.4);
rgb(25bp)=(1,0.71,0.27);
rgb(400bp)=(1,0.71,0.27)}
\tikzset {_5mipkgowt/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_iotb1nmdx}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset {_abrtlyw08/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_2yqvlqhrb}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset {_4ul5wchmn/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_2zqpbdc70}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset {_64heb4kth/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformscale{1 }  }}}
\pgfdeclareradialshading{_smbg1beh4}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(0.95,0.91,0.4);
rgb(0bp)=(0.95,0.91,0.4);
rgb(25bp)=(1,0.71,0.27);
rgb(400bp)=(1,0.71,0.27)}
\tikzset{
pattern size/.store in=\mcSize, 
pattern size = 5pt,
pattern thickness/.store in=\mcThickness, 
pattern thickness = 0.3pt,
pattern radius/.store in=\mcRadius, 
pattern radius = 1pt}
\makeatletter
\pgfutil@ifundefined{pgf@pattern@name@_hyohzuxyo}{
\pgfdeclarepatternformonly[\mcThickness,\mcSize]{_hyohzuxyo}
{\pgfqpoint{0pt}{-\mcThickness}}
{\pgfpoint{\mcSize}{\mcSize}}
{\pgfpoint{\mcSize}{\mcSize}}
{
\pgfsetcolor{\tikz@pattern@color}
\pgfsetlinewidth{\mcThickness}
\pgfpathmoveto{\pgfqpoint{0pt}{\mcSize}}
\pgfpathlineto{\pgfpoint{\mcSize+\mcThickness}{-\mcThickness}}
\pgfusepath{stroke}
}}
\makeatother
\tikzset {_8uif3rlmn/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformrotate{0 }  \pgftransformscale{2 }  }}}
\pgfdeclarehorizontalshading{_q1xywb549}{150bp}{rgb(0bp)=(0.96,0.65,0.14);
rgb(37.5bp)=(0.96,0.65,0.14);
rgb(50bp)=(1,1,0);
rgb(62.5bp)=(0.98,0.66,0.12);
rgb(100bp)=(0.98,0.66,0.12)}
\tikzset {_mr01o5838/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformrotate{0 }  \pgftransformscale{2 }  }}}
\pgfdeclarehorizontalshading{_xi57eqt30}{150bp}{rgb(0bp)=(0.96,0.65,0.14);
rgb(37.5bp)=(0.96,0.65,0.14);
rgb(50bp)=(1,1,0);
rgb(62.5bp)=(0.96,0.65,0.14);
rgb(100bp)=(0.96,0.65,0.14)}
\tikzset {_oh3h4civ4/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -108.9 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_bl99180rw}{\pgfpoint{-72bp}{88bp}}{rgb(0bp)=(0.96,0.65,0.14);
rgb(0bp)=(0.96,0.65,0.14);
rgb(25bp)=(0.96,0.65,0.14);
rgb(400bp)=(0.96,0.65,0.14)}
\tikzset{_a7szafv0o/.code = {\pgfsetadditionalshadetransform{\pgftransformshift{\pgfpoint{89.1 bp } { -108.9 bp }  }  \pgftransformscale{1.32 } }}}
\pgfdeclareradialshading{_dq2i4a2p1} { \pgfpoint{-72bp} {88bp}} {color(0bp)=(transparent!61);
color(0bp)=(transparent!61);
color(25bp)=(transparent!0);
color(400bp)=(transparent!0)} 
\pgfdeclarefading{_dvvqjytqv}{\tikz \fill[shading=_dq2i4a2p1,_a7szafv0o] (0,0) rectangle (50bp,50bp); } 
\tikzset {_0of3xj8vj/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformscale{1 }  }}}
\pgfdeclareradialshading{_96yks8v6n}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(0.95,0.91,0.4);
rgb(0bp)=(0.95,0.91,0.4);
rgb(25bp)=(1,0.71,0.27);
rgb(400bp)=(1,0.71,0.27)}
\tikzset {_947x67uuw/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{0 bp } { 0 bp }  }  \pgftransformscale{1 }  }}}
\pgfdeclareradialshading{_j5v4pahvc}{\pgfpoint{0bp}{0bp}}{rgb(0bp)=(0.95,0.91,0.4);
rgb(0bp)=(0.95,0.91,0.4);
rgb(25bp)=(1,0.71,0.27);
rgb(400bp)=(1,0.71,0.27)}
\tikzset {_i5thypc3x/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_tc9cj982w}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset {_yb728xrtz/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_2vyymd2mg}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset {_9a7lusm0g/.code = {\pgfsetadditionalshadetransform{ \pgftransformshift{\pgfpoint{89.1 bp } { -128.7 bp }  }  \pgftransformscale{1.32 }  }}}
\pgfdeclareradialshading{_pnp0rm26f}{\pgfpoint{-72bp}{104bp}}{rgb(0bp)=(1,1,1);
rgb(0bp)=(1,1,1);
rgb(25bp)=(0.72,0.91,0.53);
rgb(400bp)=(0.72,0.91,0.53)}
\tikzset{every picture/.style={line width=0.75pt}}
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
\draw [color={rgb, 255:red, 139; green, 87; blue, 42 }  ,draw opacity=1 ][line width=2.25]    (232.94,174.5) -- (232.98,248.44) ;
%Shape: Ellipse [id:dp5818880559945974] 
\draw  [draw opacity=0][shading=_9dejk45sk,_z38859iak] (230.58,75.03) .. controls (255.14,74.45) and (275.57,96.24) .. (276.22,123.71) .. controls (276.88,151.18) and (257.5,173.92) .. (232.94,174.5) .. controls (208.38,175.08) and (187.95,153.29) .. (187.3,125.82) .. controls (186.64,98.35) and (206.02,75.61) .. (230.58,75.03) -- cycle ;
%Shape: Moon [id:dp4083162529171056] 
\draw  [draw opacity=0][shading=_iotb1nmdx,_5mipkgowt] (231.79,174.5) .. controls (223.44,174.5) and (216.66,152.24) .. (216.65,124.77) .. controls (216.63,97.3) and (223.39,75.03) .. (231.73,75.03) .. controls (230.77,90.06) and (230.24,106.93) .. (230.25,124.76) .. controls (230.26,142.59) and (230.81,159.47) .. (231.79,174.5) -- cycle ;
%Shape: Moon [id:dp3879980589888239] 
\draw  [draw opacity=0][shading=_2yqvlqhrb,_abrtlyw08] (232.94,174.5) .. controls (250.09,174.49) and (263.98,152.21) .. (263.97,124.75) .. controls (263.96,97.28) and (250.04,75.02) .. (232.89,75.03) .. controls (245.35,81.85) and (254.35,101.53) .. (254.36,124.75) .. controls (254.37,147.97) and (245.4,167.66) .. (232.94,174.5) -- cycle ;
%Shape: Moon [id:dp9720681845461656] 
\draw  [draw opacity=0][shading=_2zqpbdc70,_4ul5wchmn] (231.79,174.5) .. controls (210.37,174.51) and (193,152.25) .. (192.99,124.78) .. controls (192.97,97.32) and (210.32,75.04) .. (231.73,75.03) .. controls (215.71,81.44) and (204.06,101.29) .. (204.08,124.78) .. controls (204.09,148.27) and (215.76,168.11) .. (231.79,174.5) -- cycle ;

%Shape: Ellipse [id:dp8816735121649075] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][fill={rgb, 255:red, 139; green, 87; blue, 42 } ,fill opacity=1 ] (228.91,248.44) .. controls (228.91,246.2) and (230.73,244.38) .. (232.98,244.37) .. controls (235.22,244.37) and (237.04,246.19) .. (237.05,248.44) .. controls (237.05,250.68) and (235.23,252.51) .. (232.98,252.51) .. controls (230.74,252.51) and (228.91,250.69) .. (228.91,248.44) -- cycle ;

%Straight Lines [id:da30973436448469527] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][line width=2.25] (464.38,166.42) -- (464.38,247) ; %Shape: Ellipse [id:dp8011825250157292] \draw [draw opacity=0][shading=_smbg1beh4,_64heb4kth] (461.86,58.01) .. controls (488.62,57.39) and (510.88,81.15) .. (511.58,111.09) .. controls (512.27,141.02) and (491.14,165.8) .. (464.38,166.42) .. controls (437.61,167.04) and (415.36,143.27) .. (414.66,113.34) .. controls (413.97,83.4) and (435.1,58.63) .. (461.86,58.01) -- cycle ; %Shape: Moon [id:dp59694708627884] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (464.38,166.42) .. controls (454.59,166.42) and (446.65,142.15) .. (446.65,112.21) .. controls (446.65,82.28) and (454.59,58.01) .. (464.38,58.01) .. controls (463.24,74.39) and (462.6,92.78) .. (462.6,112.21) .. controls (462.6,131.64) and (463.24,150.03) .. (464.38,166.42) -- cycle ; %Shape: Moon [id:dp4636522696710794] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (464.38,166.42) .. controls (483.51,166.42) and (499.03,142.15) .. (499.03,112.21) .. controls (499.03,82.28) and (483.51,58.01) .. (464.38,58.01) .. controls (474.74,68.84) and (481.7,89.06) .. (481.7,112.21) .. controls (481.7,135.37) and (474.74,155.59) .. (464.38,166.42) -- cycle ; %Shape: Moon [id:dp789832132087064] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (463.12,166.42) .. controls (439.78,166.42) and (420.86,142.15) .. (420.86,112.21) .. controls (420.86,82.28) and (439.78,58.01) .. (463.12,58.01) .. controls (445.65,64.99) and (432.95,86.62) .. (432.95,112.21) .. controls (432.95,137.81) and (445.65,159.44) .. (463.12,166.42) -- cycle ; %Shape: Cube [id:dp1906242556018487] \draw [pattern=_hyohzuxyo,pattern size=2.25pt,pattern thickness=0.75pt,pattern radius=0pt, pattern color={rgb, 255:red, 139; green, 87; blue, 42}] (174,305) -- (230,249) -- (542,249) -- (542,255) -- (486,311) -- (174,311) -- cycle ; \draw (542,249) -- (486,305) -- (174,305) ; \draw (486,305) -- (486,311) ; %Shape: Trapezoid [id:dp6714585590413324] \draw [color={rgb, 255:red, 126; green, 211; blue, 33 } ,draw opacity=1 ][fill={rgb, 255:red, 65; green, 117; blue, 5 } ,fill opacity=1 ][line width=2.25] (367.11,167.55) -- (365.11,191.16) -- (358.45,192.98) -- (344.72,173.67) -- cycle ; %Shape: Ellipse [id:dp588706688509214] \path [shading=_q1xywb549,_8uif3rlmn] (283,238.08) .. controls (283,212.17) and (319.76,191.16) .. (365.11,191.16) .. controls (410.45,191.16) and (447.21,212.17) .. (447.21,238.08) .. controls (447.21,263.99) and (410.45,285) .. (365.11,285) .. controls (319.76,285) and (283,263.99) .. (283,238.08) -- cycle ; % for fading \draw [color={rgb, 255:red, 228; green, 179; blue, 98 } ,draw opacity=1 ][line width=2.25] (283,238.08) .. controls (283,212.17) and (319.76,191.16) .. (365.11,191.16) .. controls (410.45,191.16) and (447.21,212.17) .. (447.21,238.08) .. controls (447.21,263.99) and (410.45,285) .. (365.11,285) .. controls (319.76,285) and (283,263.99) .. (283,238.08) -- cycle ; % for border

%Shape: Ellipse [id:dp5431769945792511] \draw [color={rgb, 255:red, 228; green, 214; blue, 54 } ,draw opacity=1 ][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (296.42,238.08) .. controls (296.42,212.17) and (327.17,191.16) .. (365.11,191.16) .. controls (403.04,191.16) and (433.79,212.17) .. (433.79,238.08) .. controls (433.79,263.99) and (403.04,285) .. (365.11,285) .. controls (327.17,285) and (296.42,263.99) .. (296.42,238.08) -- cycle ; %Shape: Ellipse [id:dp2054813099725561] \path [shading=_xi57eqt30,_mr01o5838] (316.86,238.08) .. controls (316.86,212.17) and (338.73,191.16) .. (365.71,191.16) .. controls (392.69,191.16) and (414.56,212.17) .. (414.56,238.08) .. controls (414.56,263.99) and (392.69,285) .. (365.71,285) .. controls (338.73,285) and (316.86,263.99) .. (316.86,238.08) -- cycle ; % for fading \draw [color={rgb, 255:red, 218; green, 143; blue, 18 } ,draw opacity=1 ][line width=2.25] (316.86,238.08) .. controls (316.86,212.17) and (338.73,191.16) .. (365.71,191.16) .. controls (392.69,191.16) and (414.56,212.17) .. (414.56,238.08) .. controls (414.56,263.99) and (392.69,285) .. (365.71,285) .. controls (338.73,285) and (316.86,263.99) .. (316.86,238.08) -- cycle ; % for border

%Shape: Ellipse [id:dp06546529351501129] \path [shading=_bl99180rw,_oh3h4civ4,path fading= _dvvqjytqv ,fading transform={xshift=2}] (338.99,238.08) .. controls (338.99,212.17) and (350.68,191.16) .. (365.11,191.16) .. controls (379.53,191.16) and (391.23,212.17) .. (391.23,238.08) .. controls (391.23,263.99) and (379.53,285) .. (365.11,285) .. controls (350.68,285) and (338.99,263.99) .. (338.99,238.08) -- cycle ; % for fading \draw [color={rgb, 255:red, 226; green, 177; blue, 135 } ,draw opacity=1 ] (338.99,238.08) .. controls (338.99,212.17) and (350.68,191.16) .. (365.11,191.16) .. controls (379.53,191.16) and (391.23,212.17) .. (391.23,238.08) .. controls (391.23,263.99) and (379.53,285) .. (365.11,285) .. controls (350.68,285) and (338.99,263.99) .. (338.99,238.08) -- cycle ; % for border %Shape: Half Frame [id:dp4213651279829713] \draw [color={rgb, 255:red, 155; green, 155; blue, 155 } ,draw opacity=1 ][fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ][line width=0.75] (339.4,211.96) -- (354.64,226.92) -- (350.85,227.13) -- (342.41,218.84) -- (333.33,228.09) -- (323.01,228.66) -- cycle ; %Shape: Half Frame [id:dp8131320628485688] \draw [color={rgb, 255:red, 155; green, 155; blue, 155 } ,draw opacity=1 ][fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ][line width=0.75] (386.82,213.76) -- (403.83,229.81) -- (394.63,229.06) -- (384.42,219.43) -- (376.7,227.61) -- (373.96,227.39) -- cycle ; %Shape: Moon [id:dp48428973558075783] \draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (409.09,234.04) .. controls (408.72,255.4) and (388.51,272.39) .. (363.94,271.97) .. controls (339.37,271.56) and (319.75,253.9) .. (320.11,232.53) .. controls (328.8,244.25) and (345.26,252.31) .. (364.27,252.63) .. controls (383.28,252.95) and (400.01,245.46) .. (409.09,234.04) -- cycle ; %Shape: Rectangle [id:dp16382426123018368] \draw [draw opacity=0][fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (340.02,247.92) -- (348.65,249.79) -- (346.78,258.42) -- (338.15,256.55) -- cycle ; %Shape: Rectangle [id:dp7406074924261952] \draw [draw opacity=0][fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (358.23,264.3) -- (367.06,264.1) -- (367.26,272.93) -- (358.44,273.13) -- cycle ; %Shape: Rectangle [id:dp49840973876346384] \draw [draw opacity=0][fill={rgb, 255:red, 255; green, 255; blue, 255 } ,fill opacity=1 ] (381.33,250.39) -- (389.68,247.53) -- (392.54,255.88) -- (384.19,258.74) -- cycle ; %Straight Lines [id:da7744328129542166] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][line width=2.25] (194,195) -- (194,295) ; %Shape: Ellipse [id:dp8245825953608985] \draw [draw opacity=0][shading=_96yks8v6n,_0of3xj8vj] (190.88,60.48) .. controls (224.09,59.7) and (251.71,89.19) .. (252.57,126.34) .. controls (253.43,163.49) and (227.21,194.23) .. (194,195) .. controls (160.79,195.77) and (133.17,166.28) .. (132.3,129.13) .. controls (131.44,91.99) and (157.67,61.25) .. (190.88,60.48) -- cycle ; %Shape: Moon [id:dp18718748963990772] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (194,195) .. controls (181.85,195) and (172,164.89) .. (172,127.74) .. controls (172,90.59) and (181.85,60.48) .. (194,60.48) .. controls (192.59,80.81) and (191.8,103.63) .. (191.8,127.74) .. controls (191.8,151.85) and (192.59,174.67) .. (194,195) -- cycle ; %Shape: Moon [id:dp02110260470258929] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (194,195) .. controls (217.75,195) and (237,164.89) .. (237,127.74) .. controls (237,90.59) and (217.75,60.48) .. (194,60.48) .. controls (206.86,73.91) and (215.5,99) .. (215.5,127.74) .. controls (215.5,156.48) and (206.86,181.57) .. (194,195) -- cycle ; %Shape: Moon [id:dp2625683074896563] \draw [draw opacity=0][fill={rgb, 255:red, 245; green, 166; blue, 35 } ,fill opacity=1 ] (192.44,195) .. controls (163.48,195) and (140,164.89) .. (140,127.74) .. controls (140,90.59) and (163.48,60.48) .. (192.44,60.48) .. controls (170.76,69.13) and (155,95.97) .. (155,127.74) .. controls (155,159.5) and (170.76,186.34) .. (192.44,195) -- cycle ; %Shape: Circle [id:dp3764880649437865] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][fill={rgb, 255:red, 139; green, 87; blue, 42 } ,fill opacity=1 ] (188.5,289.5) .. controls (188.5,286.46) and (190.96,284) .. (194,284) .. controls (197.04,284) and (199.5,286.46) .. (199.5,289.5) .. controls (199.5,292.54) and (197.04,295) .. (194,295) .. controls (190.96,295) and (188.5,292.54) .. (188.5,289.5) -- cycle ; %Straight Lines [id:da4268771110379046] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][line width=2.25] (516,167) -- (516,267) ; %Shape: Ellipse [id:dp35211222710508094] \draw [draw opacity=0][shading=_j5v4pahvc,_947x67uuw] (512.88,32.48) .. controls (546.09,31.7) and (573.71,61.19) .. (574.57,98.34) .. controls (575.43,135.49) and (549.21,166.23) .. (516,167) .. controls (482.79,167.77) and (455.17,138.28) .. (454.3,101.13) .. controls (453.44,63.99) and (479.67,33.25) .. (512.88,32.48) -- cycle ; %Shape: Moon [id:dp3141879323180983] \draw [draw opacity=0][shading=_tc9cj982w,_i5thypc3x] (514.44,167) .. controls (503.15,167) and (494,136.89) .. (494,99.74) .. controls (494,62.59) and (503.15,32.48) .. (514.44,32.48) .. controls (513.13,52.81) and (512.39,75.63) .. (512.39,99.74) .. controls (512.39,123.85) and (513.13,146.67) .. (514.44,167) -- cycle ; %Shape: Moon [id:dp49401539016497464] \draw [draw opacity=0][shading=_2vyymd2mg,_yb728xrtz] (516,167) .. controls (539.2,167) and (558,136.89) .. (558,99.74) .. controls (558,62.59) and (539.2,32.48) .. (516,32.48) .. controls (532.85,41.71) and (545,68.34) .. (545,99.74) .. controls (545,131.14) and (532.85,157.76) .. (516,167) -- cycle ; %Shape: Moon [id:dp19220270178164633] \draw [draw opacity=0][shading=_pnp0rm26f,_9a7lusm0g] (514.44,167) .. controls (485.48,167) and (462,136.89) .. (462,99.74) .. controls (462,62.59) and (485.48,32.48) .. (514.44,32.48) .. controls (492.76,41.13) and (477,67.97) .. (477,99.74) .. controls (477,131.5) and (492.76,158.34) .. (514.44,167) -- cycle ;

%Shape: Circle [id:dp5951621979362955] \draw [color={rgb, 255:red, 139; green, 87; blue, 42 } ,draw opacity=1 ][fill={rgb, 255:red, 139; green, 87; blue, 42 } ,fill opacity=1 ] (510.5,267) .. controls (510.5,263.96) and (512.96,261.5) .. (516,261.5) .. controls (519.04,261.5) and (521.5,263.96) .. (521.5,267) .. controls (521.5,270.04) and (519.04,272.5) .. (516,272.5) .. controls (512.96,272.5) and (510.5,270.04) .. (510.5,267) -- cycle ;

%Shape: Tear Drop [id:dp05138066373811534] \draw [line width=1.5] (275.34,93.76) .. controls (275.34,93.76) and (275.34,93.76) .. (275.34,93.76) .. controls (242.02,69.04) and (240.14,41.49) .. (271.16,32.24) .. controls (302.18,22.98) and (354.34,35.51) .. (387.66,60.24) .. controls (420.98,84.96) and (422.86,112.51) .. (391.84,121.76) .. controls (354.4,132.94) and (336.32,147.87) .. (337.59,166.57) .. controls (336.32,147.87) and (315.56,123.61) .. (275.34,93.76) -- cycle ;

% Text Node \draw (194,321) node [anchor=north west][inner sep=0.75pt] [align=left] {I am always with you....with affection from the sky \ldots \textbf{GuM}}; % Text Node \draw (296,61) node [anchor=north west][inner sep=0.75pt] [align=left] {$\color{orange}{\bigpumpkin}+2\bigpumpkin=\pumpkin$\ \textit{Buhhh} \ Ahahahaah};

\end{tikzpicture}

\end{document}

Sebastiano
  • 54,118
24

It is always hard to lose a friend.

\documentclass{article}
\usepackage[dvipsnames]{xcolor}
\usepackage{halloweenmath}
\usepackage{tikzlings}
\usepackage{amsmath}

\begin{document} \begin{tikzpicture}

\cat[witch=Bittersweet,scale=2.5,schroedinger,
signpost={$
    \begin{array}{c}
        \mathwitch \overbat{H}\mid\Psi\rangle=E\mid\Psi\rangle \\
         \\
        \xrightswishingghost{\text{Happy Halloween}} \\
    \end{array}
    $},
signcolour= brown!60!black,
signback=green!40!black]

\end{tikzpicture}

\end{document}

EDIT: Changed it to Schrödinger equation. I'm not a mathematician, so please forgive me if the notation is incorrect. It is also long time ago.

enter image description hereenter image description here

Roland
  • 6,655
17

Background context: Noto Sans Math font has math symbols but no Math table in the font, and so luatex/xetex defaults to tfm information instead, but to use unicode-math package, @davidcarlisle suggested in a comment that the range= feature could be used to pull symbols from that font if another math font was used as the main base font. (However, Noto Sans is the font family to use, as NotoSansMath-Regular is what is attached to the download button on the Google Fonts page and has hardly anything in it, certainly not the expected treat of >2k glyphs, as if someone had been tricked somewhere along the way).

And so, an illustration of how:

halloween

Blue is from Noto Sans.

The Great Pumpkin operator comes in very handy.

MWE

\documentclass{article}
\usepackage{xcolor}
\usepackage[nosumlimits]{amsmath}

\usepackage{halloweenmath} \usepackage{unicode-math} \setmathfont{Asana Math}[Colour=brown] \setmathfont{NotoSans-italic}[Colour=blue,range=it/{latin,greek}] \setmathfont{NotoSansMath-Regular.ttf}[Colour=blue,range=up/{num}] \setmainfont{Arial}[Scale=1.1,Colour=red] \begin{document} xyz [x=f(y)\alpha\beta,\gamma =\pumpkin(A)^{\mathghost}] This is a test. [\xrightflutteringbat[sin^{2}\theta]{sin\theta}] [ \overscriptrightbroom {a^{2}+b^{2}=c^{3}}\mathwitch* (\phi \minus\phi{2}) ] [ \mathcloud\greatpumpkin_{y=0}^{e^{i}} f(y_x) ] \end{document}

Cicada
  • 10,129
17

Please forgive me. My students haven't yet.

enter image description here

\documentclass{article}

\usepackage{halloweenmath}

\begin{document}

[ \frac{\greatpumpkin+\greatpumpkin+\greatpumpkin+\greatpumpkin}{1+\dfrac{1^2}{2+\dfrac{3^2}{2+\dfrac{5^2}{2+\dfrac{7^2}{2+\dfrac{9^2}{2+\raisebox{-1ex}{$\ddots$}}}}}}} ]

\end{document}

Sandy G
  • 42,558
  • 1
    It took a moment thanks to rusty memories of continued fractions but – Don Hosek Nov 03 '21 at 16:15
  • Even if I gave the bounty to another answer, I would like to reward also this one because it is an actual use of halloweenmath, so I accepted it. – CarLaTeX Nov 07 '21 at 06:55
  • 1
    @CarLaTeX, anyone who would take the time to make a package as sublime as halloweenmath is clearly my kind of person. I'm sorry for the loss of your friend. GuM's work is a model for this wonderful community. – Sandy G Nov 07 '21 at 17:32
  • @SandyG Yes, it's so sad to have lost him – CarLaTeX Nov 07 '21 at 18:05
17

I used halloweenmath once in a talk about creating posters:

enter image description here

The code for the halloween math is quite simple

  \[
   \mathwitch_{i=1}^{n}
   \frac
    {\text{$i$-th magic term}}
    {\text{$2^{i}$-th wizardry}}
  \]

The whole poster is available here https://gitlab.com/UlrikeFischer/dante19-poster/-/blob/master/dante19poster.pdf

Ulrike Fischer
  • 327,261
15
\documentclass[tikz, border=1 cm]{standalone}
\usetikzlibrary{fadings, decorations.text}
\usepackage{halloweenmath}
\begin{tikzfadingfrompicture}[name=witch]
\node[transparent!0, scale=3] {$\displaystyle\mathwitch$};
\end{tikzfadingfrompicture}
\begin{document}
\begin{tikzpicture}
\fill[top color=cyan!50!black, bottom color=green!30!black] (-2.5,-2.2) rectangle (2.5,2.2);
\node[cyan!50!black, scale=4] at (-1.2,1.3) {$\mathcloud$};
\node[cyan!50!black, scale=4] at (1.2,1.3) {$\mathcloud$};
\node[cyan!50!black, scale=3] at (0,1.5) {$\mathcloud$};
\draw[decorate, decoration={text along path, text align=fit to path, text color=yellow!90!black, text={|\bf|Room on the Broom}}] (-2,1) to [bend left] (2,1);
\node[scale=3, brown!60!black] {$\displaystyle\mathwitch*$};
\draw[path fading=witch, fit fading=false, bottom color=blue, top color=black, middle color=red] (-2,-1.1) rectangle (2,1.1);
\node[scale=0.2, gray, fill=black, path fading=circle with fuzzy edge 20 percent] at (0.42,0.8) {$\skull$};
\node[scale=0.1, yellow, fill=darkgray, path fading=circle with fuzzy edge 20 percent] at (1.15,0.55) {$\skull$};
\node[scale=0.1, yellow, fill=darkgray, path fading=circle with fuzzy edge 20 percent] at (1.22,0.55) {$\skull$};
\node[scale=2, yellow, fill=orange!80, path fading=circle with fuzzy edge 20 percent] at (-1.6,0.5) {$\pumpkin$};
\foreach \n in {1,...,100}
 \node[green!80!black, fill=green!20!black, path fading=circle with fuzzy edge 20 percent] at ({4.4*rnd-2.2}, {0.5*rnd-1.9}) {$\mathghost$};
\end{tikzpicture}
\end{document}

Witch on green

15

This is a slide from a talk I gave in the awesome Talk Math With Your Friends series. In the original, I used emoji for the functors but given how category theory seems to frighten some folk, replacing the emoji by halloween-math symbols seems very appropriate.

Halloween functors

The full code is too much to post as it is an entire talk, the crucial pieces are:

In the preamble:

\def\qedsymbol{\(\pumpkin\)}
\newcommand\trmFunctor{\mathghost}
\newcommand\incFunctor{\pumpkin}
\newcommand\lcmFunctor{\skull}
\newcommand\mulFunctor{\mathwitch}
\newcommand\divFunctor{\mathbat}

And in the document:

\begin{frame}{Adjoint Functors}
\pause

\begin{block}{Categories in Play} \begin{itemize} \item (\N), (a \to b) if (a \mid b) \item (12 \N), (a \to b) if (a \mid b) \ (multiples of (12)) \end{itemize} \end{block}

\pause

\begin{block}{Functors} \vspace{-.5cm} \begin{align} \incFunctor \colon 12 \N &\to \N, & a &\mapsto a \ \lcmFunctor \colon \N &\to 12 \N, & a &\mapsto \lcm(12,a) \ \mulFunctor \colon \N &\to \N, & a &\mapsto 12 a \ \divFunctor \colon \N &\to \N, & a &\mapsto \frac{a}{\hcf(12,a)} \end{align*} \end{block}

\pause

\begin{block}{Adjunctions} [ \lcmFunctor \vdash \incFunctor, \qquad\text{and}\qquad \divFunctor \vdash \mulFunctor ]

\begin{itemize} \item The nearest'' multiple of \(12\) to \(a\) is \(\lcm(12,a)\). \item Theinverse'' of multiplying by (12) is dividing by (\hcf(12,-)). \end{itemize}

\end{block}

\end{frame}

Andrew Stacey
  • 153,724
  • 43
  • 389
  • 751
8

Just exciting with the idea glueing \pumpkin, \skull, ... of the halloweenmath package on weird surface (Klein's bottle). I am on trying ... Any suggestion for me???

enter image description here

\documentclass[border=5mm]{standalone}
\usepackage[inline]{asymptote}
\begin{document}
%\newsavebox\pumpkinbox
%\savebox\pumpkinbox{$\pumpkin$}

\begin{asy} import graph3; usepackage("halloweenmath"); size(8cm); currentprojection=perspective(25,-30,19,zoom=1);

triple f(pair t) { real u=t.x; real v=t.y; real r=2-cos(u); real x=3cos(u)(1+sin(u))+rcos(v)(u < pi ? cos(u) : -1); real y=8sin(u)+(u < pi ? rsin(u)cos(v) : 0); real z=rsin(v); return (x,y,z); }

surface s=surface(f,(0,0),(2pi,2pi),8,8,Spline); draw(s,purple+white,"bottle",render(merge=true)); label(scale(3)"$\pumpkin$",orange); label(scale(3)"$\skull$",dir(80,20),blue);

string lo="$1+1=4$"; string hi="$\skull y^4+1 =2$"; real h=0.0125; begingroup3("parametrization"); draw(surface(lo,s,0,1.7,h)); draw(surface(scale(.3)rotate(90)hi,s,4.9,1.4,h)); endgroup3(); \end{asy} \end{document}

Black Mild
  • 17,569